Skip to main content

Structure Calculation of Protein Segments Connecting Domains with Defined Secondary Structure: A Simulated Annealing Monte Carlo Combined with Biased Scaled Collective Variables Technique

  • Conference paper
Computational Methods for Macromolecules: Challenges and Applications

Abstract

A method for modeling segments of proteins that connect regions with defined secondary structure is illustrated with a study of long segments (8–13 amino acids) that include parts of defined secondary structure motifs. Loop structure calculation can be considered a particular case of this more challenging problem. The new algorithm first finds conformations representative of the segment structure tethered to the protein at one terminus only, and subsequently drives the free end of the segment towards its attachment point using a reversed harmonic constrained simulated annealing scheme. An adjustable force constant drives the free terminal towards the attachment point, using the Monte Carlo (MC) technique of scaled collective variables (SCV). Each segment is initially placed in an extended conformation with the N-terminus covalently bound to the protein, and MC simulated annealing is carried out to find the preferred conformations of the segment. The resulting families of conformations prepare the segment for attachment of the C-terminus. In the second stage a hierarchical protocol drives the segment’s C-terminus towards its final position in the protein. The free C-terminus is attached to a dummy residue, identical to the target residue where the segment will be connected. Successive MC simulations are carried out using the SCV method with increasingly larger values of the harmonic force constant that slowly stabilize the free energy surface to ensure the correct orientation of the segment region with the rest of the system. The performance of the method was evaluated for eight segments in the a-subunit of the G protein transducin for which a high-resolution X-ray crystal structure (2.0 Å) is available. The calculation was performed using the all-atom representation and the CHARMM force field with the electrostatic effects of the solvent described implicitly by the new SCP general continuum model. The segments that are most exposed to solvent are found to be represented best with this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dobson, C. M., A. Sali, and M. Karplus. Protein Folding: A perspective from Theory and Experiment. Angewandte Chem. Int. Ed. 37:868–893 (1998).

    Article  Google Scholar 

  2. Sali, A., E. Shakhnovich, and M. Karplus. How does a Protein Fold? Nature 369:248–251 (1994).

    Article  PubMed  CAS  Google Scholar 

  3. Zhou, Y., and M. Karplus. Folding Thermodynamics of a Model Three-Helix-Bundle Protein. Proc. Natl. Acad. Sei. USA 94:14429–14432 (1997).

    Article  CAS  Google Scholar 

  4. Lazaridis, T., and M. Karplus. New View of Protein Folding Reconciled with the Old Through Multiple Unfolding Simulations. Science 278:1928–1931 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. Mohanty, D., R. Elber, D. Thirumalai, D. Beglov, and B. Roux. Kinetics of Peptide Folding: Computer Simulations of DYPFDV and Peptide Variants in Water. J. Mol. Biol. 272:423–442 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. Schaefer, M., C. Bartels, and M. Karplus. Solution Conformations and Thermodynamics of Structured peptides: Molecular Dynamics Simulation with an Implicit Solvation Model. J. Mol. Biol. 284:835–848 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. Hassan, S. A., F. Guarnieri, and E. L. Mehler. A new approach for folding peptides: conformational memories with a new implicit solvent model. Biophys. J. 78:A1978 (2000).

    Google Scholar 

  8. Hassan, S. A., F. Guarnieri, and E. Mehler. A Screened Coulomb Potential Based Implicit Solvent Model: Parametrization and Prediction of Structures of Small Peptides. Biophys. J. 76:A198 (1999).

    Article  Google Scholar 

  9. Hassan, S.A., and E. L. Mehler. A General Screening Coulomb Potential based Implicit Solvent Model: Calculation of Secondary Structure of Small Peptides. Int. J. Quant. Chem. 83:193 (2001).

    Article  CAS  Google Scholar 

  10. Godzik, A., A. Kolinski, and J. Skolnick. Lattice Representation of Globular Proteins: How Good are They? J. Comp. Chem. 14:1194–1202 (1993).

    Article  CAS  Google Scholar 

  11. Sikorski, A., A. Kolinski, and J. Skolnick. Computer Simulations of De Novo Designed Helical Proteins. Biophysical J. 75:92–105 (1998).

    Article  CAS  Google Scholar 

  12. Lu, Y., and J. S. Valentine. Engineering Metal-binding Sites in Proteins. Curr. Opin. Struct Biol 7:495–500 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. Wu, S. J., and D. H. Dean. Functional Significance of Loops in the Receptor Binding Domain of Bacilus Thuringiensis CryIIIA δ-endotoxin. J. Mol. Biol. 255:628–640 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. Jones, S., P. van Heyningen, H. M. Berman, and J. M. Thornton. Protein-DNA Interactions: A Structural Analysis. J. Mol. Biol. 287:877–896 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. Perona, J. J., and C. S. Craik. Structural Basis of Substrate Specificity. Protein Sei. 4:337–360 (1995).

    Article  CAS  Google Scholar 

  16. Meirovitch, H., and T. F. Hendrickson. Backbone Entropy of Loops as a Measure of Their Flexibility: Application to a Ras Protein Simulated by Molecular Dynamics. PROTEINS: Structure, Function, and Genetics 29:127–140 (1997).

    Article  CAS  Google Scholar 

  17. Getzoff, E. D., H. M. Geysen, S. J. Rodda, H. Alexander, J. A. Tainer, and R. A. Lerner. Mechanisms of Antibody Binding to a Protein. Science 235:1191–1196 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. Bockaert, J., and J. P. Pin. Molecular tinkering of G protein-coupled receptors: an evolutionary success. Embo J 18:1723–1729 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. Visiers, I., J. A. Ballesteros, and H. Weinstein. Computational methods for the construction and analysis of three dimensional representations of GPCR structures and mechanisms, in Methods Enzymol (I. Iyengar and J. Hildebrandt, eds.). Academic Press, New York (2001).

    Google Scholar 

  20. Go, N., and H. A. Scheraga. Ring Closure and Local Conformational Deformations of Chain Molecules. Macromolecules 3:178–187 (1970).

    Article  CAS  Google Scholar 

  21. Bruccoleri, R. E., and M. Karplus. Prediction of the Folding of Short Polypeptide Segments by Uniform Conformaional Sampling. Biopolymers 26:137–168 (1987).

    Article  PubMed  CAS  Google Scholar 

  22. Wedemeyer, W. J., and H. A. Scheraga. Exact Analytical Loop Closure in Proteins Using Polynomial Equations. J. Comp. Chem. 20:819–844 (1999).

    Article  CAS  Google Scholar 

  23. Fiser, A., R. Kinh Gian Do, and A. Sali. Modeling of Loops in Protein Structures. Protein Science 9:1753–1773 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. Li, W., Z. Liu, and L. Lai. Protein Loops on Structurally Similar Scaffolds: Database and Conformational Analysis. Biopolymers 49:481–495 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. Chotia, C, A. M. Lesk, M. Levitt, A. G. Amit, R. A. Mariuzza, S. E. V. Phillips, and R. J. Poljak. The Predicted Structure of Immunoglobulin d1.3 and its Comparison with the Crystal Structure. Science 233:755–758 (1986).

    Article  Google Scholar 

  26. van Vlijmen, H. W. T., and M. Karplus. PDB-based Protein Loop Prediction: Prameters for Selection and Methods for Optimization. J. Mol. Biol. 267:975–1001 (1997).

    Article  PubMed  Google Scholar 

  27. Higo, J., V. Collura, and J. Gamier. Development of an Extended Simulated Annealing Method: Application to the Modeling of Complementary Determining Regions of Immunoglobulins. Biopolymers 32:33–43 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. Carlacci, L., and S. W. Englander. Loop Problem in Proteins: Developments on Monte Carlo Simulated Annealing Approach. J. Comp. Chem. 17:1002–1012 (1996).

    Article  CAS  Google Scholar 

  29. Baysal, C, and H. Meirovitch. Efficiency of Simulated Annealing for Peptides with Increasing Geometrical Restrictions. J. Comp. Chem. 20:1659–1670 (1999).

    Article  CAS  Google Scholar 

  30. Nakajima, N., J. Higo, A. Kidera, and e. al. Free Energy Landscapes of Ppetides by Enhanced Conformational Sampling. J. Mol. Biol. 296:197–216 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. Kidera, A. Enhanced Conformational Sampling in Monte Carlo Simulations of Proteins: Application to a Constrained Peptide. Proc. Natl. Acad. Sei. USA 92:9886–9889 (1995). 3

    Article  CAS  Google Scholar 

  32. Still, W. C., A. Tempczyk, R. C. Hawley, and T. Hendrickson. Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc. 112:6127–6129 (1990).

    Article  CAS  Google Scholar 

  33. Hassan, S. A., F. Guarnieri, and E. L. Mehler. A General Treatment of Solent Effects Based on Screened Coulomb potentials. J. Phys. Chem. 104:6478 (2000).

    Article  CAS  Google Scholar 

  34. Vasmatzis, L., R. Brower, and C. Delisi. Biopolymers 34:1669–1680 (1994).

    Article  PubMed  CAS  Google Scholar 

  35. Zheng, Q., R. Rosenfeld, C. Delisi, and D. J. Kyle. Protein Sei. 3:493–506 (1994).

    Article  CAS  Google Scholar 

  36. Rapp, C. S., and R. A. Friesner. Prediction of Loop Geometries Using a Generalized Born Model of Soilvation Effects. PROTEINS: Structure, Function, and Genetics 35:173–183 (1999).

    Article  CAS  Google Scholar 

  37. Hassan, S. A., F. Guarnieri, and E. L. Mehler. Characterization of Hydrogen Bonding in a Continuum Solbent Model. J. Phys. Chem. 104:6490 (2000).

    Article  CAS  Google Scholar 

  38. Ma, B., and R. Nussinov. Explicit and Implicit Water Simulations of a β-Hairpin Peptide. PROTEINS: Structure, Function, and Genetics 37:73–87 (1999).

    Article  CAS  Google Scholar 

  39. Martin, A., M. MacArthur, and J. Thornton. Assesment of Comparative Modeling in CASP2. Proteins Suppl. 1:14–28 (1997).

    Article  Google Scholar 

  40. Rufino, S. D., L. E. Donate, C. L. H. J., and T. L. Blundell. Predicting the Conformational Class of Short and Medium Size Loops Connecting Regular Secondary Structures: Application to Comparative Modeling. J. Mol. Biol. 267:352–367 (1997).

    Article  PubMed  CAS  Google Scholar 

  41. Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comp. Chem. 4:187–217 (1983).

    Article  CAS  Google Scholar 

  42. MacKerell, A. D. J., D. Bashford, M. Bellott, R. J. Dunbrack, J. Evanseck, M. Field, S. Fischer, J. Gao, H. Guo, S. Ha, and e. al. All-atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 102:3586–3616 (1998).

    Article  CAS  Google Scholar 

  43. Hansmann, U. H. E., and Y. Okamoto. New Monte Carlo Algorithms for Protein Folding. Curr. Opin. Struct. Biol. 9:177–183 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. Noguti, T., and N. Go. Efficient Monte Carlo Method for Simulation of Fluctuating Conformations of Native Proteins. Biopolymers 24:527–546 (1985).

    Article  PubMed  CAS  Google Scholar 

  45. Guarnieri, F., and H. Weinstein. Conformational Memories and the Exploration of Biologically Relevant Peptide Conformations: An Illustration for the Gonadotropin-Releasing Hormone. J. Am. Chem. Soc. 118:5580–5589 (1996).

    Article  CAS  Google Scholar 

  46. Kirkpatrick, S., C. Gelatt, D., Jr., and M. P. Vecchi. Optimization by Simulated Annealing. Science 220:671–680 (1983).

    Article  PubMed  CAS  Google Scholar 

  47. Pellegrini, M., N. Gronbech-Jensen, and S. Doniach. Simulations of the Thermodynamic Properties of Short Polyalanine Peptide Using Potentials of Mean Force. Physica A 239:244–254 (1997).

    Article  CAS  Google Scholar 

  48. Kinoshita, M., Y. Okamoto, and F. Hirata. First-principle Determination of Peptide Peptide Conformations in Solvents: Combination of Monte Carlo Simulated Annealing and RISM Theory. J. Am. Chem. Soc. 120:1855–1863 (1998).

    Article  CAS  Google Scholar 

  49. Okamoto, Y., M. Masuya, M. Nabeshima, and T. Nakazawa. β-sheet Formation in BPTI(16–36) by Monte Carlo Simulated Annealing. Chem. Phys. Lett. 299:17–24 (1999).

    Article  CAS  Google Scholar 

  50. Guarnieri, F., and M. Mezei. Simulated Annealing of Chemical Potential: A General Procedure for Locating Bound Waters. Application to the Study of the Differential Hydration Propensities of the Major and Minor Grooves of DNA. J. Am. Chem. Soc. 118:8493–8494 (1996).

    Article  CAS  Google Scholar 

  51. Mehler, E. L., and E. Eichele. Electrostatic Effects in Water-Accessible Regions of Proteins. Biochemistry 23:3887–3891 (1984).

    Article  CAS  Google Scholar 

  52. Gabb, H. A., C. Prevost, G. Bertucat, C. H. Robert, and R. Lavery. Collective-Variable Monte Carlo Simulation of DNA. J. Comp. Chem. 18:2001–2011 (1997).

    Article  CAS  Google Scholar 

  53. Hurley, J. B. J. Bioenerg. Biomem. 24:219–226 (1992).

    Article  CAS  Google Scholar 

  54. Pfister, C., and e. al. Cell. Sig. 5:235–241 (1993).

    Article  CAS  Google Scholar 

  55. Lodish, H., A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and J. E. Darnell. Molecular Cell Biology, New York (2000).

    Google Scholar 

  56. Stryer, L. Biochemistry. Freeman, New York (1995).

    Google Scholar 

  57. Lambright, D. G., J. Sondek, A. Bohm, N. P. Skiba, H. E. Hamm, and P. B. Sigler. The 2.0 A Crystal Structure of a Heterotrimeric G Protein. Nature 379:311–319 (1996).

    Article  PubMed  CAS  Google Scholar 

  58. Lambright, D. G., J. P. Noel, H. E. Hamm, and P. B. Siegler. Nature 369:621–628 (1994).

    Article  PubMed  CAS  Google Scholar 

  59. Sondek, J., A. Böhm, D. G. Lambright, H. E. Hamm, and P. B. Siegler. Nature 379:369–374 (1996).

    Article  PubMed  CAS  Google Scholar 

  60. Sullivan, K. A., and e. al. Nature 330: 778–760 (1987).

    Article  Google Scholar 

  61. Simonds, W. F., P. K. Goldsmith, J. Codina, C. G. Unson, and A. M. Spiegel. Proc. Natl. Acad. Sei. USA 86:7809–7813 (1989).

    Article  CAS  Google Scholar 

  62. Noel, J. P., H. E. Hamm, and P. B. Siegler. Nature 366:654–663 (1993).

    Article  PubMed  CAS  Google Scholar 

  63. Guarnieri, F., and S. R. Wilson. Conformational Memories and a Simulated Annealing Program that Learns: Application to LTB4. J. Comp. Chem. 16:648–653 (1995).

    Article  CAS  Google Scholar 

  64. Böttcher, C. J. F. Theory of Dielectric Polarization. Elseiver, Amsterdam (1993)

    Google Scholar 

  65. Jackson, J. D. Classical Electrodynamics. Wiley (1975).

    Google Scholar 

  66. Born, M. Volumen und Hydrationswärme der Ionen. Z. Phys. 1:45–48 (1920).

    Article  CAS  Google Scholar 

  67. Hoijtink, G. J., E. de Boer, P. H. van der Meer, and W. P. Weijland. Reduction Potentials of Various Aromatic Hydrocarbons and their Univalent Anions. Rec. Trav. Chim. 75:487–503 (1956).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hassan, S.A., Mehler, E.L., Weinstein, H. (2002). Structure Calculation of Protein Segments Connecting Domains with Defined Secondary Structure: A Simulated Annealing Monte Carlo Combined with Biased Scaled Collective Variables Technique. In: Schlick, T., Gan, H.H. (eds) Computational Methods for Macromolecules: Challenges and Applications. Lecture Notes in Computational Science and Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56080-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56080-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43756-7

  • Online ISBN: 978-3-642-56080-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics