Skip to main content

Internal Coordinate Molecular Dynamics Based on the Spectroscopic B-Matrix

  • Conference paper
Computational Methods for Macromolecules: Challenges and Applications

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 24))

  • 438 Accesses

Abstract

Internal coordinate molecular dynamics (ICMD) has been used in the past in simulations for large molecules as an alternative way of increasing step size with a reduced operational dimension that is not achievable by MD in Cartesian coordinates. A new MD formalism in nonredundant generalized (internal and external) coordinates for flexible molecular systems is presented, which is based on the spectroscopic B-matrix rather than the A-matrix of previous methods. The proposed formalism does not require a direct inversion of a large matrix as in the recursive formulations based on robot dynamics, and takes advantage of the sparsity of the spectroscopic B-matrix, ensuring computational efficiency for flexible molecules. Each molecule’s external rotations about an arbitrary atom center, which may differ from its center of mass, are parameterized by the SU(2) Euler representation, giving singularity free parameterization. Based on the clear separability in the generalized coordinates between fast varying degrees of freedom and slowly varying ones, a multiple time step algorithm is introduced that avoids the nontrivial interaction distance classification inherent in the method in Cartesian coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids, Clarendon Press, Oxford (1987).

    Google Scholar 

  2. McCammon, J.A., Harvey, S.C.: Dynamics of Proteins and Nucleic Acids, Cambridge University Press, Cambridge (1987).

    Book  Google Scholar 

  3. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 23 (1977) 327–341.

    Article  CAS  Google Scholar 

  4. Andersen, H.C.: Rattle: a “velocity” version of the Shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52 (1983) 24–34.

    Article  CAS  Google Scholar 

  5. Ryckaert, J.P.: Special geometrical constraints in the molecular dynamics of chain molecules. J. Comput. Phys. 55 (1985) 549–556.

    CAS  Google Scholar 

  6. Edberg, R., Evans, D.J., Morriss, G.P.: Constrained molecular dynamics: Simulations of liquid alkanes with a new algorithm. J. Chem. Phys. 84 (1986) 6933–6939.

    Article  CAS  Google Scholar 

  7. Tobias, D.J., Brooks III, C.L.: Molecular dynamics with internal coordinate constraints. J. Chem. Phys. 89 (1988) 5115–5127.

    Article  CAS  Google Scholar 

  8. Barth, E., Kuczera, K., Leimkuhler, B., Skeel, R.D.: Algorithms for constrained molecular dynamics. J. Comput. Chem. 16 (1995) 1192–1209.

    Article  CAS  Google Scholar 

  9. Kutteh, R.: New methods for incorporating nonholonomic constraints into molecular dynamics simulations. J. Chem. Phys. 111 (1999) 1394–1406.

    Article  CAS  Google Scholar 

  10. Streett, W.B., Tildesley, D.J., Saville, G.: Multiple time-step methods in molecular dynamics. Molec. Phys. 35 (1978) 639–648.

    Article  CAS  Google Scholar 

  11. Grubmüller, H., Heller, H., Windemuth, A., Schulten, K.: Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Molec. Simul. 6 (1991) 121–142.

    Article  Google Scholar 

  12. Tuckerman, M., Berne, B.J., Martyna, G.J.: Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97 (1992) 1990–2001.

    Article  CAS  Google Scholar 

  13. Humphreys, D.D., Friesner, R.A., Berne, B.J.: A multiple-time-step molecular dynamics algorithm for macromolecules. J. Phys. Chem. 98 (1994) 6885–6892.

    Article  CAS  Google Scholar 

  14. Biesiadecki, J.J., Skeel, R.D.: Dangers of multiple time step methods. J. Comput. Phys. 109 (1993) 318–328.

    Article  Google Scholar 

  15. Izaguirre, J.A., Reich, S., Skeel, R.D.: Longer time steps for molecular dynamics. J. Chem. Phys. 110 (1999) 9853–9864.

    Article  CAS  Google Scholar 

  16. Peskin, C.S., Schlick, T.: Molecular dynamics by the backward-Euler method. Commun. Pure Appl. Math. 42 (1989) 1001–1031.

    Article  Google Scholar 

  17. Zhang, G., Schlick, T.: LIN: a new algorithm to simulate the dynamics of biomolecules by combining implicit-integration and normal mode techniques. J. Comput. Chem. 14 (1993) 1212–1233.

    Article  CAS  Google Scholar 

  18. Barth, E., Schlick, T.: Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN. J. Chem. Phys. 109 (1998) 1617–1632.

    Article  CAS  Google Scholar 

  19. Paizs, B., Fogarasi, G., Pulay, P.: An efficient direct method for geometry optimization of large molecules in internal coordinates. J. Chem. Phys. 109 (1998) 6571–6576.

    Article  CAS  Google Scholar 

  20. Baker, J., Kinghorn, D., Pulay, P.: Geometry optimization in delocalized internal coordinates: An efficient quadratically scaling algorithm for large molecules. J. Chem. Phys. 110 (1999) 4986–4991.

    Article  CAS  Google Scholar 

  21. Jorgensen, W.L., Tirado-Rives, J.: Monte Carlo vs molecular dynamics for conformational sampling. J. Phys. Chem. 100 (1996) 14508–14513.

    Article  CAS  Google Scholar 

  22. Gō, N., Scheraga, H.A.: Ring closure and local conformational deformations of chain molecules. Macromolecules 3 (1970) 178–187.

    Article  Google Scholar 

  23. Noguti, T., Gō, N.: Dynamics of native globular proteins in terms of dihedral angles. J. Phys. Soc. Japan 52 (1983) 3283–3288.

    Article  CAS  Google Scholar 

  24. Mazur, A.K., Abagyan, R.A.: New methodology for computer-aided modelling of biomolecular structure and dynamics 1. Non-cyclic structure. J. Biomol. Struct. Dyn. 6 (1989) 815–832.

    Article  PubMed  CAS  Google Scholar 

  25. Mazur, A.K., Abagyan, R.A.: New methodology for computer-aided modelling of biomolecular structure and dynamics 2. Local deformations and cycles. J. Biomol. Struct. Dyn. 6 (1989) 833–845.

    Article  PubMed  Google Scholar 

  26. Gibson, K.D., Scheraga, H.A.: Variable step molecular dynamics: An exploratory technique for peptides with fixed geometry. J. Comput. Chem. 11 (1990) 468–486.

    Article  CAS  Google Scholar 

  27. Jain, A., Vaidehi, N., Rodriguez, G.: A fast recursive algorithm for molecular dynamics simulation. J. Comput. Phys. 106 (1993) 258–268.

    Google Scholar 

  28. Rice, L.M., Brünger, A.T.: Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement. Proteins 19 (1994) 277–290.

    Article  PubMed  CAS  Google Scholar 

  29. Turner, J., Weiner, P., Robson, B., Venugopal, R., Schubele III, H., Singh, R.: Reduced variable molecular dynamics. J. Comput. Chem. 16 (1995) 1271–1290.

    Article  CAS  Google Scholar 

  30. Kneller, G.R., Hinsen, K.: Generalized Euler equations for linked rigid bodies. Phys. Rev. E 50 (1994) 1559–1564.

    Article  Google Scholar 

  31. He, S., Scheraga, H.A.: Macromolecular conformational dynamics in torsional angle space. J. Chem. Phys. 108 (1998) 271–286.

    Article  CAS  Google Scholar 

  32. Mazur, A.K.: Symplectic integration of closed chain rigid body dynamics with internal coordinate equations of motion. J. Chem. Phys. 111 (1999) 1407–1414.

    Article  CAS  Google Scholar 

  33. Amadei, A., Linssen, A.B.M., Berendsen, H.J.C.: Essential dynamics of proteins. Proteins 17 (1993) 412–425.

    Article  PubMed  CAS  Google Scholar 

  34. Bae, D.-S., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics: Part I. Open loop systems. Mech. Struct. Mach. 15(3) (1987) 359–382.

    Article  Google Scholar 

  35. Rodriguez, G., Jain, A., Kreutz-Delgado, K.: Spatial operator algebra for multibody system dynamics. J. Astronaut. Sei. 40 (1992) 27–50.

    Google Scholar 

  36. Lee, S.-H., Palmo, K., Krimm, S.: A new formalism for molecular dynamics in internal coordinates. Chem. Phys. 265 (2001) 63–85.

    Article  CAS  Google Scholar 

  37. Wilson, E.B., Decius, J.C., Cross, P.C.: Molecular Vibrations, McGraw-Hill, New York (1955).

    Google Scholar 

  38. Califano, S.: Vibrational States, Wiley, New York (1976).

    Google Scholar 

  39. Lee, S.-H., Palmo, K., Krimm, S.: New out-of-plane angle and bond angle internal coordinates and related potential energy functions for molecular mechanics and dynamics simulations. J. Comput. Chem. 20 (1999) 1067–1084.

    Article  CAS  Google Scholar 

  40. Goldstein, H.: Classical Mechanics, Addison-Wesley, Reading, MA. (1971).

    Google Scholar 

  41. Berendsen, H.J.C.: Protein folding: A glimpse of the holy grail? Science 282 (1998) 642–643.

    Article  PubMed  CAS  Google Scholar 

  42. Duan, Y., Kollman, P.A.: Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282 (1998) 740–744.

    Article  PubMed  CAS  Google Scholar 

  43. Palmo, K., Pietila, L.-O., Krimm, S.: Construction of molecular mechanics energy functions by mathematical transformation of ab initio force fields and structures. J. Comput. Chem. 12 (1991) 385–390.

    Article  CAS  Google Scholar 

  44. Palmo, K., Pietila, L.-O., Krimm, S.: Optimization of parameters of nonbonded interactions in a spectroscopically determined force field. Computers. Chem. 17 (1993) 67–72.

    Article  CAS  Google Scholar 

  45. Mannfors, B., Sundius, T., Palmo, K., Pietila, L.-O., Krimm, S.: Spectroscopically determined force fields for macromolecules. Part 3. Alkene chains. J. Mol. Struct. 521 (2000) 49–75.

    Article  CAS  Google Scholar 

  46. Allen, W.D., Császár A.G.: On the ab initio determination of higher-order force constants at nonstationary reference geometries. J. Chem. Phys. 98 (1993) 2983–3015.

    Article  CAS  Google Scholar 

  47. Eckart, C: Some studies concerning rotating axes and polyatomic molecules. Phys. Rev. 47 (1935) 552–558.

    Article  CAS  Google Scholar 

  48. Sayvetz, A.: The kinetic energy of polyatomic molecules. J. Chem. Phys. 7 (1939) 383–389.

    Article  CAS  Google Scholar 

  49. Lee, S.-H., Palmo, K., Krimm, S.: The Casimir-Eckart condition and the transformation of dipole moment derivatives revisited. J. Mol. Struct. (Theochem.) 546 (2001) 217–230.

    Article  CAS  Google Scholar 

  50. Evans, D. J.: On the representation of orientation space. Molec. Phys. 34 (1977) 317–325.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, SH., Palmo, K., Krimm, S. (2002). Internal Coordinate Molecular Dynamics Based on the Spectroscopic B-Matrix. In: Schlick, T., Gan, H.H. (eds) Computational Methods for Macromolecules: Challenges and Applications. Lecture Notes in Computational Science and Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56080-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56080-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43756-7

  • Online ISBN: 978-3-642-56080-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics