Skip to main content

Identification of Sequence-Specific Tertiary Packing Motifs in Protein Structures using Delaunay Tessellation

  • Conference paper
Computational Methods for Macromolecules: Challenges and Applications

Abstract

An approach to recognizing recurrent sequence-structure patterns in proteins has been developed, based on Delaunay tessellation of protein structure. Starting with a united residue (side chain centroids) representation of a protein structure, tessellation partitions the structure into a unique set of irregular tetra-hedra, or simplices whose vertices correspond to four nearest-neighbor residues. Tetrahedral clusters composed of residues not adjacent along the polypeptide chain have been classified according to their amino acid composition and the three distances separating the residues along the sequence; these distances being defined as the sequence lengths from first to second, second to third, and third to fourth residue. An elementary tertiary packing motif is defined as a Delaunay simplex with a specific amino acid composition, together with three sequence distances (i.e., number of residues along the sequence) between vertex residues. Analysis of three databases of diverse protein structures (< 30% sequence identity between any pair, 1922 structures total) identified 224 motifs found in at least two proteins from different fold families each. To further substantiate the methodology, three groups of proteins representing unique structural and functional families were analyzed and packing motifs characteristic of each of them have been identified. The proposed methodology is termed Simplicial Neighborhood Analysis of Protein Packing (SNAPP). SNAPP can be used to locate recurrent tertiary structural motifs as well as sequence-specific, functionally relevant patterns similar to Prosite (Hofmann, et al. 1999) signatures. We anticipate that the SNAPP methodology will be useful in automating the analysis and comparison of protein structures determined in structural and functional genomics projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aurenhammer, F., Voronoi Diagrams: A survey of a fundamental data st ructure. (1991) ACM. Comput. Surveys, 23, 345–405.

    Article  Google Scholar 

  2. Altschul, SF., Madden T, Schffer A., Zhang J, Zhang Z, Miller W, Lipman D. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  3. Bryant SH, Lawrence CE. (1993) An empirical energy function for threading protein sequence through the folding motif. Proteins, 16, 92–112

    Article  PubMed  CAS  Google Scholar 

  4. Carter CW Jr, LeFebvre BC, Cammer SA, Tropsha A, Edgell MH. (2001) Four-body potentials reveal protein-specific correlations to stability changes caused by hydrophobic core mutations. J. Mol. Biol.; 311, 625–638.

    Article  PubMed  CAS  Google Scholar 

  5. Casari G, Sippl M. 1992. Structure-derived hydrophobic potential. Hydrophobic potential derived from X-ray structures of globular proteins is able to identify native folds. Proteins. 13, 258–271.

    Article  Google Scholar 

  6. Chothia, C. Structural invariants in protein folding (1975). Nature 254, 304–308.

    Article  PubMed  CAS  Google Scholar 

  7. Chothia, C., Levitt, M., Richardson D. (1997). Structure of Proteins: Packing of α-helices and pleated sheets. Proc. Natl. Acad. Sci. USA 74, 4130–4134.

    Article  Google Scholar 

  8. Chothia, C, Janin, J. (1980). Packing of α-Helices onto β-pleated Sheets and the Anatomy of α/β Proteins. J. Mol. Biol. 143, 95–128.

    Article  PubMed  Google Scholar 

  9. Finney, J.L., “Random packing and the structure of simple liquids” (1970) Proc. R. Soc., A319, 479–493.

    Google Scholar 

  10. Chothia C, Levitt M, Richardson D. (1981). Helix to Helix Packing in Proteins. J. Mol. Biol. 145, 215–250.

    Article  PubMed  CAS  Google Scholar 

  11. Gan, H.H., Tropsha, A. and Schlick, T. Generating Folded Protein Structures with a Lattice Chain Algorithm. (2000) J. Chem. Phys., 113, 5511–5524.

    Article  CAS  Google Scholar 

  12. Gan, H.H., Tropsha, A. and Schlick, T. Lattice Protein Folding with Two and Four-Body Statistical Potentials. (2001) Proteins: Struct. Funct. Genetics, 43, 161–174.

    Article  CAS  Google Scholar 

  13. Gernert K.M., Thomas B.D., Plurad J.C., Richardson J.S., Richardson D.C., Bergman L.D. (1996). Puzzle pieces defined: locating common packing units in tertiary protein contacts. In: Pacific Symposium on Biocomputing ’96, Hawaii, Jan. 3–6, 1996, Eds. L. Hunter and T.E. Klein, World Scientific, Singapore, pp. 331–349.

    Google Scholar 

  14. Gerstein, M., Tsai, J., and Levitt, M. The volume of atoms on the protein surface: calculated from simulation using Voronoi polyhedra. (1995) J. Mol. Biol., 249, 955–966.

    Article  PubMed  CAS  Google Scholar 

  15. Godzik A, Skolnick J. (1992). Sequence Structure Matching in Globular Proteins — Application to Supersecondary and Tertiary Structure Determination. Proc. Natl. Acad. Sci. USA. 89, 12098–12102.

    Article  PubMed  CAS  Google Scholar 

  16. Harpaz, Y., Gerstein, M., and Chothia, C. (1994) Volume changes on protein folding. Structure, 2, 641–649.

    Article  PubMed  CAS  Google Scholar 

  17. Henikoff S, Henikoff J, Pietrokovski S. (1999). Blocks+: a non-redundant database of protein alignment blocks derived from multiple compilations. Bioinformatics. 15, 471–9.

    Article  PubMed  CAS  Google Scholar 

  18. Hobohm U, Scharf M, Schneider R, Sander C. (1992). Selection of Represent ative Protein Data Sets. Prot. Sci. 1, 409–417.

    Article  CAS  Google Scholar 

  19. Hofmann K, Bucher P, Falquet L, Bairoch A. (1999). The PROSITE database, its status in 1999. Nucleic Acids Res. 27, 215–219.

    Article  PubMed  CAS  Google Scholar 

  20. Holm L, Sander C. (1998). Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 26, 316–9.

    Article  PubMed  CAS  Google Scholar 

  21. Hooft RWW, Sander C, Vriend G. 1996. Verification of protein structures: Sidechain planarity. J. Appl. Cryst. 29, 714–716.

    Article  CAS  Google Scholar 

  22. Hutchinson EG, Sessions R, Thornton, J, Woolfson, D. 1998. Determinants of strand register in antiparallel (-sheets of proteins. Protein. Sci. 7:2287–2300.

    Article  PubMed  CAS  Google Scholar 

  23. Jonassen I, Eidhammer I, Taylor W. (1999). Discovery of local packing motifs in protein structures. Proteins. Feb 1: 34(2):206–19.

    Article  PubMed  CAS  Google Scholar 

  24. Jones D, Thornton J. (1996). Potential energy functions for threading. Curr. Opin. Struct. Biol. 6, 210–216.

    Article  PubMed  CAS  Google Scholar 

  25. Koretke KK, Luthey-Schulten Z, Wolynes PG. (1996) Self-consistently optimized statistical mechanical energy functions for sequence structure alignment. Protein Sci. 5, 1043–1059.

    Article  PubMed  CAS  Google Scholar 

  26. Lahr SJ, Broadwater A, Carter CW Jr, Collier ML, Hensley L, Waldner JC, Pielak GJ, Edgell MH. (1999). Patterned library analysis: a method for the quantitative assessment of hypotheses concerning the determinants of protein structure. Proc. Natl. Acad. Sci. USA. 96, 14860–5.

    Article  PubMed  CAS  Google Scholar 

  27. Maiorov VN, Crippen GM. (1992). Contact potential that recognizes the correct folding of globular proteins. J. Mol. Biol. 227, 876–88.

    Article  PubMed  CAS  Google Scholar 

  28. Miyazawa S, Jernigan RL. (1996). Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 256, 623–44.

    Article  PubMed  CAS  Google Scholar 

  29. Munson P, Singh R. (1998). Statistical significance of hierarchical multi-body potentials based on Delaunay tessellation and their application in sequence structure alignment. Protein Sci. 6, 1467–81.

    Article  Google Scholar 

  30. Murzin AG, Brenner SE, Hubbard T, Chothia C. (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540.

    PubMed  CAS  Google Scholar 

  31. Okabe, A., Boots, B., and Sugihara, K. (1992) Spatial tessellations: concepts and applications of Voronoi diagrams. Chichester, Wiley.

    Google Scholar 

  32. Richards, F.M. (1974). The int erpretation of protein structures: total volume, group volume distribution and packing density. J. Mol. Biol. 82, 1–14.

    Article  PubMed  CAS  Google Scholar 

  33. Singh R, Tropsha A, Vaisman I. (1996). Delaunay tessellation of proteins: four body nearest-neighbor propensities of amino acid residues. J. Comput. Biol., 3, 213–222.

    Article  PubMed  CAS  Google Scholar 

  34. Sippl, MJ. (1995). Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol. 5, 229–35.

    Article  PubMed  CAS  Google Scholar 

  35. Tropsha, A., Singh, R.K., Vaisman, I.I., and Zheng, W. (1996) Statistical Geometry Analysis of Proteins: Implications for Inverted Structure Prediction. In: Pacific Symposium on Biocomputing ’96, Hawaii, Jan. 3–6,, Eds. L. Hunter and T.E. Klein, World Scientific, Singapore, pp. 614–623.

    Google Scholar 

  36. Young M, Skillman A, Kuntz I. (1999). A rapid method for exploring the protein structure universe. Proteins 34, 317–32.

    Article  PubMed  CAS  Google Scholar 

  37. Wako H, Yamato T. (1998). Novel method to detect a motif of local structures in different protein conformations. Protein Eng. 11, 981–90.

    Article  PubMed  CAS  Google Scholar 

  38. Watson, DF. (1981). Computing the n-dimensional Delaunay tesselation with application to Voronoi polytopes. Comp. J., 24, 167–172

    Article  Google Scholar 

  39. Zheng W, Cho J, Vaisman I, Tropsha A. (1997). A new approach to protein fold recognition based on Delaunay tessellation of protein structure. In: Pacific Symposium on Biocomputing ’97, Hawaii, Jan. 6–9, 1997, Eds, L. Hunter and T.E. Klein, World Scientific, Singapore, pp. 486–497.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Tropsha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cammer, S.A., Carter, C.W., Tropsha, A. (2002). Identification of Sequence-Specific Tertiary Packing Motifs in Protein Structures using Delaunay Tessellation. In: Schlick, T., Gan, H.H. (eds) Computational Methods for Macromolecules: Challenges and Applications. Lecture Notes in Computational Science and Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56080-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56080-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43756-7

  • Online ISBN: 978-3-642-56080-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics