Skip to main content

Treecode Algorithms for Computing Nonbonded Particle Interactions

  • Conference paper
Computational Methods for Macromolecules: Challenges and Applications

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 24))

Abstract

Two new algorithms are described for computing nonbonded particle interactions in classical molecular systems, (1) a particle-cluster treecode for the real space Ewald sum in a system with periodic boundary conditions, and (2) a cluster-cluster treecode for the total potential energy in a system with vacuum boundary conditions. The first algorithm treats electrostatic interactions and the second algorithm treats general power-law interactions. Both algorithms use a divide-and-conquer strategy, adapted rectangular clusters, and Taylor approximation in Cartesian coordinates. The necessary Taylor coefficients are computed efficiently using recurrence relations. The second algorithm implements variable order approximation, and a run-time choice between Taylor approximation and direct summation. Test results are presented for an equilibrated water system, and random and sparse particle systems.

This work was supported by NSF grants DMS-9506452 and DMS-9973293, a University of Michigan Rackham Faculty Fellowship, and Michigan Life Sciences

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karplus, M., Petsko, G. A.: Molecular dynamics simulations in biology. Nature 347 (1990) 631–639

    Article  PubMed  CAS  Google Scholar 

  2. van Gunsteren, W. F., Hünenberger, P. H., Mark, A. E., Smith, P. E., Tironi, I. G.: Computer simulation of protein motion. Comput. Phys. Comm. 91 (1995) 305–319

    Article  Google Scholar 

  3. Neumaier, A.: Molecular modeling of proteins and mathematical prediction of protein structure. SIAM Review 39 (1997) 407–460

    Article  Google Scholar 

  4. Stone, A. J.: The Theory of Intermolecular Forces, Oxford University Press, Oxford (1996)

    Google Scholar 

  5. Allen, M. P., Tildesley, D. J.: Computer Simulation of Liquids, Oxford University Press, Oxford (1987)

    Google Scholar 

  6. Greengard, L.: Fast algorithms for classical physics. Science 265 (1994) 909–914

    Article  PubMed  CAS  Google Scholar 

  7. Sagui, C, Dar den, T. A.: Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Annu. Rev. Biophys. Biomol. Struct. 28 (1999) 155–179

    Article  PubMed  CAS  Google Scholar 

  8. Schlick, T., Skeel, R. D., Brunger, A. T., Kalé, L. V., Board, Jr., J. A., Hermans, J., Schulten, K.: Algorithmic challenges in computational molecular biophysics. J. Comput. Phys. 151 (1999) 9–48

    Article  CAS  Google Scholar 

  9. Hockney, R. W., Eastwood, J. W.: Computer Simulation Using Particles, IOP Publishing, Bristol (1988)

    Book  Google Scholar 

  10. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: an N -log(N) method for Ewald sums in large systems. J. Chem. Phys. 98 (1993) 10089–10092

    Article  CAS  Google Scholar 

  11. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., Pedersen, L.: A smooth particle mesh Ewald method. J. Chem. Phys. 103 (1995) 8577–8593

    Article  CAS  Google Scholar 

  12. York, D., Yang, W.: The fast Fourier Poisson method for calculating Ewald sums. J. Chem. Phys. 101 (1994) 3298–3300

    Article  CAS  Google Scholar 

  13. Sagui, C, Darden, T.: Multigrid methods for classical molecular dynamics simulations of biomolecules. J. Chem. Phys. 114 (2001) 6578–6591

    Article  CAS  Google Scholar 

  14. Brandt, A., Lubrecht, A. A.: Multilevel matrix multiplication and the fast solution of integral equations. J. Comput. Phys. 90 (1990) 348–370

    Article  Google Scholar 

  15. Brandt, A., Venner, C. H.: Multilevel evaluation of integral transforms with asymptotically smooth kernels. SIAM J. Sei. Comput. 19 (1998) 468–492

    Article  Google Scholar 

  16. Zaslavsky, L. Y., Schlick, T.: An adaptive multigrid technique for evaluating long-range forces in biomolecular simulations, Appl. Math. Comput. 97 (1998) 237–250

    Google Scholar 

  17. Sandak, B.: Multiscale fast summation of long range charge and dipolar interactions. J. Comp. Chem. 22 (2001) 717–731

    Article  CAS  Google Scholar 

  18. 18. Sandak, B.: Efficient computational algorithms for fast electrostatics and molecular docking, this volume

    Google Scholar 

  19. Appel, A. W.: An efficient program for many-body simulation. SIAM J. Sei. Stat. Comput. 6 (1985) 85–103

    Article  Google Scholar 

  20. Barnes, J., Hut, P.: A hierarchical 0(NlogN) force-calculation algorithm. Nature 324 (1986) 446–449

    Article  Google Scholar 

  21. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comp. Phys. 73 (1987) 325–348

    Article  Google Scholar 

  22. Board Jr., J. A., Causey, J. W., Leathrum Jr., J. F., Windemuth, A., Schulten, K.: Accelerated molecular dynamics simulation with the parallel fast multipole algorithm. Chem. Phys. Lett. 198 (1992) 89–94

    Article  Google Scholar 

  23. Ding, H.-Q., Karasawa, N., Goddard III, W. A.: Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions. J. Chem. Phys. 97 (1992) 4309–4315

    Article  CAS  Google Scholar 

  24. Saito, M.: Molecular dynamics simulations of proteins in water without the truncation of long-range Coulomb interactions. Molec. Simul. 8 (1992) 321–331

    Article  Google Scholar 

  25. 25. Elliott, W. D., Board Jr., J. A.: Fast multipole algorithm for the Lennard-Jones potential. Tech. Rep. 94-005, Duke University EECS Dept. (1994) (http:/ /www. ee. duke. edu/research/SciComp/Papers/TR94-005. html)

    Google Scholar 

  26. Shimada, J., Kaneko, H., Takada, T.: Performance of fast multipole methods for calculating electrostatic interactions in biomacromolecular simulations. J. Comput. Chem. 15 (1994) 28–43

    Article  CAS  Google Scholar 

  27. White, C. A., Head-Gordon, M.: Derivation and efficient implementation of the fast multipole method. J. Chem. Phys. 101 (1994) 6593–6605

    Article  Google Scholar 

  28. Fenley, M. O., Olson, W. K., Chua, K., Boschitsch, A. H.: Fast adaptive multi-pole method for computation of electrostatic energy in simulations of polyelectrolyte DNA. J. Comput. Chem. 17 (1996) 976–991

    Article  CAS  Google Scholar 

  29. Niedermeier, C, Tavan, P.: Fast version of the structure adapted multipole method - efficient calculation of electrostatic forces in protein dynamics. Mol. Simul. 17 (1996) 57–66

    Article  CAS  Google Scholar 

  30. White, C. A., Head-Gordon, M.: Rotating around the quartic angular momentum barrier in fast multipole method calculations. J. Chem. Phys. 105 (1996) 5061–5067

    Article  CAS  Google Scholar 

  31. Xue, G. L., Zall, A. J., Pardalos, P. M.: Rapid evaluation of potential energy functions in molecular and protein conformations. DIM ACS Series in Discrete Mathematics and Theoretical Computer Science 23 (1996) 237–249

    Google Scholar 

  32. Zhao, F.: An O (N) algorithm for three-dimensional N-body simulations. AI-TR-995, Massachusetts Institute of Technology (1987)

    Google Scholar 

  33. Carrier, J., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm for particle simulations. SIAM J. Sei. Statist. Comput. 9 (1988) 669–686

    Article  Google Scholar 

  34. van Dommelen, L., Rundensteiner, E. A.: Fast, adaptive summation of point forces in the two-dimensional Poisson equation. J. Comput. Phys. 83 (1989) 126–147

    Article  Google Scholar 

  35. Anderson, C: An implementation of the fast multipole method without multi-poles. SIAM J. Stat. Sei. Comp. 13 (1992) 923–947

    Article  Google Scholar 

  36. Salmon, J. K., Warren, M. S.: Skeletons from the treecode closet. J. Comput. Phys. 1ll (1994) 136–155

    Article  Google Scholar 

  37. Elliott, W. D., Board Jr., J. A.: Fast Fourier transform accelerated fast multi-pole algorithm. SIAM J. Sei. Comput. 17 (1996) 398–415

    Article  Google Scholar 

  38. Strickland, J. H., Baty, R. S.: A pragmatic overview of fast multipole methods. Lect. Appl. Math. 32, (1996) 807–830

    Google Scholar 

  39. Wang, H. Y., LeSar, R.: An efficient fast-multipole algorithm based on an expansion in the solid harmonics. J. Chem. Phys. 104 (1996) 4173–4179

    Article  CAS  Google Scholar 

  40. Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155 (1999) 468–498

    Article  CAS  Google Scholar 

  41. Duan, Z.-H., Krasny, R.: An Ewald summation based multipole method. J. Chem. Phys. 113 (2000) 3492–3495

    Article  CAS  Google Scholar 

  42. Duan, Z.-H., Krasny, R.: An adaptive treecode for computing nonbonded potential energy in classical molecular systems. J. Comput. Chem. 22 (2001) 184–195

    Article  CAS  Google Scholar 

  43. Draghicescu, C, Draghicescu, M.: A fast algorithm for vortex-blob interactions. J. Comput. Phys. 116 (1995) 69–78

    Article  Google Scholar 

  44. Lindsay, K.: A three-dimensional Cartesian tree-code and applications to vortex sheet roll-up. Ph.D. Thesis, University of Michigan (1997)

    Google Scholar 

  45. Lindsay, K., Krasny, R.: A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow. J. Comput. Phys. 172 (2001) 879–907

    Article  CAS  Google Scholar 

  46. de Leeuw, S. W., Perram, J. W., Smith, E. R.: Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constant. Proc. Roy. Soc. Lond. A 373 (1980) 27–56

    Google Scholar 

  47. Toukmaji, A. Y., Board Jr., J. A.: Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 95 (1996) 73–92

    Article  CAS  Google Scholar 

  48. Perram, J. W., Petersen, H. G., de Leeuw, S. W.: An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles. Mol. Phys. 65 (1988) 875–893

    CAS  Google Scholar 

  49. Fincham, D.: Optimisation of the Ewald sum for large systems. Mol. Sim. 13 (1994) 1–9

    Article  CAS  Google Scholar 

  50. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., Klein, M. L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79 (1983) 926–935

    Article  CAS  Google Scholar 

  51. Rapaport, D. C: The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, (1995)

    Google Scholar 

  52. Hummer, G., Pratt, L. R., Garcia, A. E.: Molecular theories and simulation of ions and polar molecules in water. J. Phys. Chem. 102 (1998) 7885–7895

    Article  CAS  Google Scholar 

  53. Vâsquez, M., Némethy, G., Scheraga, H. A.: Conformational energy calculations on polypeptides and proteins. Chem. Rev. 94 (1994) 2183–2239

    Article  Google Scholar 

  54. Pérez-Jordâ, J. M., Yang, W.: A simple O(NlogN) algorithm for the rapid evaluation of particle-particle interactions. Chem. Phys. Lett. 247 (1995) 484–490

    Google Scholar 

  55. Andrews, G. E., Askey, R., Roy, R.: Special Functions, Cambridge University Press, Cambridge, (1999)

    Google Scholar 

  56. Hao, M.-H. Olson, W. K.: Global equilibrium configurations of supercoiled DNA. Macromolecules 22 (1989) 3292–3303

    Article  CAS  Google Scholar 

  57. Boschitsch, A. H., Fenley, M. O., Olson, W. K.: A fast adaptive multipole algorithm for calculating screened Coulomb (Yukawa) interactions. J. Comput. Phys. 151 (1999) 212–241

    Article  CAS  Google Scholar 

  58. Esselink, K.: A comparison of algorithms for long-range interactions. Comput. Phys. Commun. 87 (1995) 375–395

    CAS  Google Scholar 

  59. Pollock, E. L., Glosli, J.: Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems. Comput. Phys. Commun. 95 (1996) 93–110

    CAS  Google Scholar 

  60. Deserno, M., Holm, C: How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 109 (1998) 7678–7693

    Article  CAS  Google Scholar 

  61. 61. Barth, E., Leimkuhler, B., Reich, S.: A test set for molecular dynamics, this volume

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krasny, R., Duan, ZH. (2002). Treecode Algorithms for Computing Nonbonded Particle Interactions. In: Schlick, T., Gan, H.H. (eds) Computational Methods for Macromolecules: Challenges and Applications. Lecture Notes in Computational Science and Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56080-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56080-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43756-7

  • Online ISBN: 978-3-642-56080-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics