Skip to main content

Methods for Macromolecular Modeling (M3): Assessment of Progress and Future Perspectives

  • Conference paper
Book cover Computational Methods for Macromolecules: Challenges and Applications

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 24))

  • 428 Accesses

Abstract

The workshop on Methods for Macromolecular Modeling (M3), held at New York University on 12–14 October 2000, provided the 187 participants from Europe, Asia, the Americas, and the Middle East1, a forum for reviewing progress in the field, discussing promising developments for the future, and voicing concerns about multidisciplinary efforts. Inspired by these issues, we review progress in several key areas, discuss challenging problems in structural biology, and address scientific and cultural issues of mathematics/biology interface research. Specifically, we mention opportunities in structural genomics and more broadly structural biology (protein folding, protein folding disorders and disease, and energetic/conformational pathways in proteins); we also highlight emerging mathematical methods, unified molecular force fields, biomolecular dynamics simulations, and free energy computations. Finally, we discuss three obstacles to interdisciplinary research: quantitative problem formulations, formulation of benchmarks, and understanding the biological significance of research topics.

“Science is above all a world of ideas in motion.”— François Jacob, Of flies, mice, and men [1].

This article is dedicated to Peter Kollman, plenary speaker in M3, who met his untimely death in the spring of 2001

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Jacob, Of flies, mice, and men, Harvard University Press, 1998, p. 127.

    Google Scholar 

  2. T. Schlick, Computational molecular biophysics today: A confluence of methodological advances and complex biomolecular applications, J. Comp. Phys., 151, 1–9, May 1999. Special Volume on Computational Biophysics.

    Article  CAS  Google Scholar 

  3. S. Tsoka and C. A. Ouzounis, Recent developments and future directions in computational genomics, FEBS Letters 480, 42–48 (2000).

    Article  PubMed  Google Scholar 

  4. M. Kanehisa, Post-genomics informatics, Oxford, New York, 2000.

    Google Scholar 

  5. J. A. Graves, Background and overview of comparative genomics. ILAR J. 39, 48–65 (1998).

    PubMed  Google Scholar 

  6. M. L. Yaspo, Taking a functional genomics approach in molecular medicine. Trends Mol Med. 7, 494–501 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. D. Sankoff, and J. H. Nadeau, eds., Comparative genomics. Dordrecht: Kluwer Academic Publishers, 2000.

    Google Scholar 

  8. O. G. Vukmirovic and S. M. Tilghman, Exploring genome space, Nature 405, 820–822 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. D. Endy and R. Brent, Modelling cellular behaviour, Nature (Nature Insight), 409, 391–395 (2001).

    Google Scholar 

  10. S. K. Burley, An Overview of Structural Genomics, Nature Struct. Biol. 7 Suppl., 932–934 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. R. Sánchez, U. Pieper, F. Melo, N. Eswar, M. A. Martí-Renom, M. S. Mad-husudhan, N. Mirković, and A. Šali, Protein structure modeling for structural genomics. Nature Struct. Biol. 7 Suppl., 986–990 (2000).

    Article  PubMed  Google Scholar 

  12. A. Kolinski and J. Skolnick, Lattice models of protein folding, dynamics, and thermodynamics. Landes, Austin, Texas, 1996.

    Google Scholar 

  13. J. Clarke and C. M. Dobson, Folding and binding: Emerging themes in protein folding and assembly. Curr. Opin. Struct. Biol, 11, 67–59 (2001).

    Article  Google Scholar 

  14. K. W. Plaxco, K. T. Simons, and D. Baker, Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol., 277, 985–994 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. R. B. Laughlin, D. Pines, J. Schmalian, B. P. Stojković, and P. Wolynes. The middle way. Proc. Natl. Acad. Sci. (USA), 97, 32–37 (2000).

    Article  CAS  Google Scholar 

  16. C. M. Dobson and M. Karplus, The fundamentals of protein folding: bringing together theory and experiment. Curr. Opin. Struct. Biol 9, 92–101 (1999).

    Article  PubMed  Google Scholar 

  17. K. A. Dill and H. S. Chan, From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10–19 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. J. E. Shea and C. L. Brooks III, From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem. 52, 499–535 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. A. Liwo, C. Czaplewski, J. Pillardy, and H. A. Scheraga, Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. J. Chem. Phys. 115, 2323–2347 (2001).

    Article  CAS  Google Scholar 

  20. B. Honig, Protein folding: from the Levinthal paradox to structure prediction. J. Mol Biol., 293, 283–293 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. E. Alm and D. Baker, Matching theory and experiment in protein folding. Curr. Opin. Struct Biol., 9, 189–196 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. D. Baker, A surprising simplicity to protein folding. Nature, 405, 39–42 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. A. Fersht, Structure and mechanism in proteins science. Freeman, New York, 2000.

    Google Scholar 

  24. Liwo A, Kazmierkiewicz R, Czaplewski C, Groth M, Oldziej S, Wawak RJ, Rackovsky S, Pincus MR, Scheraga HA. United-residue force field for off-lattice protein-structure simulations: III. Origin of backbone hydrogen-bonding coop-erativity in united-residue potentials. J Comput Chem 1998;19:259–276.

    Article  Google Scholar 

  25. K.T. Simons, R. Bonneau, I. Ruczinski, and Baker, D. Ab initio Protein Structure Prediction of CASP III Targets Using ROSETTA. Proteins 37 S3, 171–176 (1999).

    Article  Google Scholar 

  26. J. Skolnick, A. Kolinski, and A. Ortiz, MONSSTER: a method for folding globular proteins with a small number of distance restraints. J. Mol Biol. 265, 217–241.

    Google Scholar 

  27. J. Lee, A. Liwo, and H. A. Scheraga, Energy-based de novo protein folding by conformational space annealing and an off-lattice united-residue force field: application to the 10–55 fragment of staphylococcal protein A and to apo calbindin D9K. Proc. Natl Acad. Sci. USA. 96, 2025–2030 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. H. H. Gan, A. Tropsha, and T. Schlick, Lattice protein folding with two and four-body statistical potentials. Proteins: Struct. Fund. Genet., 43, 161–174 (2001).

    Article  CAS  Google Scholar 

  29. S. W. Lockless and R. Ranganathan, Evolutionarily conserved pathways of energetic connectivity in protein families. Science, 286, 295–299 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. M. Doi and S. Edwards, The theory polymer dynamics. Oxford University Press, Oxford, 1986; P. J. de Gennes, Scaling concepts in polymer physics. Cornell University Press, Ithaca, New York, 1979.

    Google Scholar 

  31. S. B. Prusiner, Shattuck lecture — Neurodegenerative diseases and prions. New Eng. J. Med. 344, 1516–1526 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. C. M. Dobson, Protein misfolding, evolution and disease. Trends Biochem. Sci. 24(9), 329–367 (2001).

    Article  Google Scholar 

  33. I. V. Baskakov, G. Legname, S. B. Prusiner, and F. E. Cohen, Folding of prion to its native α-helical conformation is under kinetic control. J. Biol. Chem., April 16. 2001.

    Google Scholar 

  34. J. H. Viles, D. Donne, G. Kroon, S. B. Prusiner, F. E. Cohen, H. J. Dyson, and P. E. Wright, Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Biochemistry 40, 2743–2753 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. P. M. Harrison, H. S. Chan, S. B. Prusiner, and F. E. Cohen. Conformational propagation with prion-like characteristics in a simple model of protein folding. Protein Sci., 10, 819–835 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. A. Slepoy, R. R. Singh, F. Pazmandi, R. V. Kulkarni, and D. L. Cox, Statistical mechanics of prion diseases. Phys. Rev. Lett. 87, 058101 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. L. Duan and P. Kollman, Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science, 282, 740–744.

    Google Scholar 

  38. Protein Structure Prediction Center, http://predictioncenter.llnl.gov/.

    Google Scholar 

  39. A. Kolinski, M. R. Betancourt, D. Kihara, P. Rotkiewicz, and J. Skolnick, Generalized comparative modeling (GENECOMP): A combination of sequence comparison, threading, and lattice modeling for protein structure prediction and refinement. Proteins 44, 133–149 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. K. F. Lau and K. A. Dill, A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22, 2986–3997 (1989).

    Article  Google Scholar 

  41. M. Levitt and A. Warshel, Computer simulation of protein folding. Nature 253, 694–698 (1975).

    Article  PubMed  CAS  Google Scholar 

  42. A. Liwo, S. Oldziej, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga, A united-residue force-field for off-lattice protein-structure simulations. I. Functional forms and parameters of long-ramge side-chain interaction potentials from protein crystal data. J. Comput. Chem. 18, 849–872 (1997).

    Article  CAS  Google Scholar 

  43. A. Sali, E. Shakhnovich, and M. Karplus, How does a protein fold? Nature 369, 248–251 (1994).

    Article  PubMed  CAS  Google Scholar 

  44. D. L. Beveridge and K. J. McConnell, Nucleic acids: theory and computer simulation, Y2K. Curr. Opin. Struct. Biol. 10, 182–196 (2000).

    Article  PubMed  CAS  Google Scholar 

  45. W. Wang, O. Donini, C. M. Reyes, and P. A. Kollman, Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 30, 211–243 (2001).

    Article  PubMed  CAS  Google Scholar 

  46. J. Huang, T. Schlick, and A. Vologodskii, Dynamics of site juxtaposition in supercoiled DNA. Proc. Natl. Acad. Sci. USA 98, 968–973 (2001).

    Article  PubMed  CAS  Google Scholar 

  47. H. Jian, T. Schlick, and A. Vologodskii, Internal motion of supercoiled DNA: Brownian dynamics simulations of site juxtaposition. J. Mol. Biol. 284, 287–296 (1998).

    Article  PubMed  CAS  Google Scholar 

  48. D. A. Beard and T. Schlick, Modeling salt-mediated electrostatics of macro-molecules: The discrete surface charge optimization algorithm and its application to the nucleosome. Biopolymers 58, 106–115 (2001).

    Article  PubMed  CAS  Google Scholar 

  49. D. A. Beard and T. Schlick, Computational modeling predicts the structure and dynamics of chromatin fiber. Structure 9, 105–114 (2001).

    Article  PubMed  CAS  Google Scholar 

  50. M. Feig, P. Rotkiewcz, A. Kolinski, J. Skolnick, and C. L. Brooks III, Accurate reconstruction of all-atom protein representations from side-chain-based low-resolution models. Proteins 41, 86–97 (2000).

    Article  PubMed  CAS  Google Scholar 

  51. J. Aishima, R. Gitti, J. E. Noah, H. H. Gan, T. Schlick, and C. Wolberger, Crystal structure of MATalpha2 homeodomain-DNA complex contains a Hoogsteen base pair, submitted to Nature Struct. Biol, 2001.

    Google Scholar 

  52. T. Schlick, D. A. Beard. J. Huang, D. A. Strahs, and X. Qian, Computational challenges in simulating large DNA over long times. Computing in Science and Engineering, 38–51, Nov./Dec. 1999.

    Google Scholar 

  53. X. Qian and D. Strahs and T. Schlick Dynamic simulations of 13 TATA variants refine kinetic hypotheses of sequence/activity relationships. J. Mol. Biol. 308, 681–703 (2001).

    Article  PubMed  CAS  Google Scholar 

  54. T. Schlick, Time-trimming tricks for dynamics simulations: splitting force updates to reduce computational work. Structure 9, R45–R53 (2001).

    Article  PubMed  CAS  Google Scholar 

  55. D. Beard and T. Schlick, Modeling salt-mediated electrostatics of macromolecules: The Algorithm DiSCO (Discrete Charge Surface Charge Optimization) and its application to the nucleosome. Biopolymers 58, 106–115 (2001).

    Article  PubMed  CAS  Google Scholar 

  56. J. Huang and T. Schlick and A. Vologodskii, Dynamics of site juxtaposition in supercoiled DNA. Proc. Natl. Acad. Sci USA 98, 968–973 (2001).

    Article  PubMed  CAS  Google Scholar 

  57. D. Bai and A. Brandt, Multiscale computation of polymer models. In Multiscale Computational Methods in Chemistry and Physics, Eds. Brandt, A., Bernholc J. and Binder, K. NATO Science Series: Series III Computer and Systems Sciences, 2001.

    Google Scholar 

  58. T. Schlick and A. Brandt, A multigrid tutorial with applications to molecular dynamics, IEEE Comput. Sci. Engineer. 3, 78–83, Fall 1996.

    Article  Google Scholar 

  59. U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid. Academic Press, New York, 2001.

    Google Scholar 

  60. C. Sagui and T. Darden, Multigrid methods for classical molecular dynamics simulations. Preprint, 2000.

    Google Scholar 

  61. J. Lee, A. Liwo, D. R. Ripoll, J. Pillardy, J. A. Saunders, K. D. Gibson, and H. A. Scheraga, Hierarchical energy-based approach to protein-structure prediction: blind-test evaluation with CASP3 targets. Intl. J. Quantum Chem. 77, 90–117 (2000).

    Article  CAS  Google Scholar 

  62. J. A. McCammon, B. R. Gelin, and M. Karplus, Dynamics of folded proteins. Nature 267, 585–590 (1977).

    Article  PubMed  CAS  Google Scholar 

  63. W. F. van Gunsteren and H. J. C. Berendsen, Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys. 34, 1311–1327 (1977).

    Article  Google Scholar 

  64. M. Levitt, Computer simulation of DNA double-helix dynamics. Cold Spring Harbor Symp. Quant. Biol. 47, 251–275 (1983).

    Article  Google Scholar 

  65. G. L. Seibel, U. C. Singh, and P. A. Kollman, A molecular dynamics simulation of double-helical B-DNA including counterions and water. Proc. Natl. Acad. Sci. USA 82, 6537–6540 (1985).

    Article  PubMed  CAS  Google Scholar 

  66. M. Prabhakaran, S. C. Harvey, B. Mao, and J. A. McCammon, Molecular dynamics of phenylalanine transfer RNA. J. Biomol. Struct. Dynam. 1, 357–369 (1983).

    Article  CAS  Google Scholar 

  67. B. J. Alder and T. E. Wainwright, Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459–466 (1959).

    Article  CAS  Google Scholar 

  68. A. Rahman and F. H. Stillinger, Molecular dynamics study of liquid water. J. Chem. Phys. 55, 3336–3359 (1971).

    Article  CAS  Google Scholar 

  69. W. B. Streett, D. J. Tildesley, and G. Saville, Multiple time step methods in molecular dynamics. Mol. Phys. 35, 639–648 (1978).

    Article  CAS  Google Scholar 

  70. H. Grubmüller, H. Heller, A. Windemuth, and K. Schulten, Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Sim. 6, 121–142 (1991).

    Article  Google Scholar 

  71. J. J. Biesiadecki and R. D. Skeel, Dangers of multiple-time-step methods. J. Comput. Phys. 109, 318–328 (1993).

    Article  Google Scholar 

  72. M. E. Tuckerman, B. J. Berne, and G. J. Martyna, Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001 (1992).

    Article  CAS  Google Scholar 

  73. B. Leimkuhler and S. Reich, Symplectic integration of constrained Hamiltonian systems. Math. Comput. 63, 589–605 (1994).

    Article  Google Scholar 

  74. R. D. Skeel, G. Zhang, and T. Schlick, A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications. SIAM J. Sci. Comput. 18(1), 202–222, January 1997.

    Article  Google Scholar 

  75. B. J. Leimkuhler, S. Reich, and R. D. Skeel, Integration methods for molecular dynamics. In J. P. Mesirov, K. Schulten, and D. W. Sumners, editors, Mathematical Approaches to Biomolecular Structure and Dynamics, volume 82 of IMA Volumes in Mathematics and Its Applications, pages 161–186, New York, NY, 1996. Springer-Verlag.

    Google Scholar 

  76. E. Barth and T. Schlick, Overcoming stability limitations in biomolecular dynamics: I. Combining force splitting via extrapolation with Langevin dynamics in LN. J. Chem. Phys. 109, 1617–1632 (1998).

    Article  CAS  Google Scholar 

  77. B. Garcia-Archilla, J.M. Sanz-Serna, and R.D. Skeel, Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998).

    Article  Google Scholar 

  78. J. A. Izaguirre, S. Reich, and R. D. Skeel, Longer time steps for molecular dynamics. J. Chem. Phys. 110, 9853–9864 (1999).

    Article  CAS  Google Scholar 

  79. J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems. Chapman & Hall, London, England, 1994.

    Google Scholar 

  80. H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980).

    Article  CAS  Google Scholar 

  81. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    Article  Google Scholar 

  82. S. Nosé, Constant temperature molecular dynamics methods. Prog. Theor. Phys. Suppl. 103, 1–46 (1991).

    Article  Google Scholar 

  83. G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein. Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87, 1117–1157 (1996).

    Article  CAS  Google Scholar 

  84. T. Schlick, Time-trimming tricks for dynamic simulations: Splitting force updates to reduce computational work. Structure 9, R45–R53 (2001).

    Article  PubMed  CAS  Google Scholar 

  85. P. Batcho, D. A. Case, and T. Schlick, Optimized particle-mesh Ewald/ multiple-timestep integration for molecular dynamics simulations. J. Chem. Phys. 115, 4003–4018 (2001).

    CAS  Google Scholar 

  86. R. Zhou, E. Harder, H. Xu, and B.J. Berne, Efficient multiple time step method for use with Ewald and particle mesh Ewald for large biomolecular systems. J. Chem. Phys. 115, 2348–2358 (2001).

    Article  CAS  Google Scholar 

  87. E. Barth and T. Schlick, Extrapolation versus impulse in multiple-timestepping schemes: II. Linear analysis and applications to Newtonian and Langevin dynamics. J. Chem. Phys. 109, 1632–1642 (1998).

    Google Scholar 

  88. E. Paci and M. Karplus, Unfolding proteins by external forces and temperature: The importance of topology and energetics. Proc. Natl. Acad. Sci. USA 97, 6521–6526 (2000).

    Article  PubMed  CAS  Google Scholar 

  89. R. Elber, J. Melier, and R. Ölender, Stochastic path approach to compute atomically detailed trajectories: Application to the folding of C peptide. J. Phys. Chem. B 103, 899–911 (1999).

    Article  CAS  Google Scholar 

  90. G. Zou, R. D. Skeel, and S. Subramanian, Biased Brownian dynamics for rate constant calculation. Biophys. J. 79, 638–645 (2000).

    Article  PubMed  CAS  Google Scholar 

  91. S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo, Phys. Lett. B 195, 216–222 (1987).

    Article  CAS  Google Scholar 

  92. A. Brass, B. J. Pendleton, Y. Chen, and B. Robson, Hybrid Monte Carlo simulations theory and initial comparison with molecular dynamics. Biopolymers 33, 1307–1315 (1993).

    Article  CAS  Google Scholar 

  93. A. Brass, B. J. Pendleton, Y. Chen, and B. Robson, Hybrid Monte Carlo simulations theory and initial comparison with molecular dynamics. Biopolymers 33, 1307–1315 (1993).

    Article  CAS  Google Scholar 

  94. B. J. Berne and J. E. Straub, Novel methods of sampling phase space in the simulation of biological systems. Curr. Opin. Struct. Biol. 7, 181–189 (1997).

    Article  PubMed  CAS  Google Scholar 

  95. A. Fischer, F. Cordes, and C. Süchtte, Hybrid Monte Carlo with adaptive temperature in mixed-canonical ensemble: Efficient conformational analysis of RNA. J. Comput. Chem. 19, 1689–1697 (1998).

    Article  CAS  Google Scholar 

  96. H. Senderowitz and W. C. Still, MC(JBW): Simple but smart Monte Carlo algorithm for free energy simulations of multiconformational molecules. J. Comput Chem. 19, 1736–1745 (1998).

    Article  CAS  Google Scholar 

  97. L. J. LaBerge and J. C. Tully, A rigorous procedure for combining molecular dynamics and Monte Carlo simulation algorithms. Chem. Phys. 260, 183–191 (2000).

    Article  CAS  Google Scholar 

  98. P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D. A. Case, and T. E. Cheatham, 3rd., Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Chem. Res. 33, 889–897 (2000).

    Article  CAS  Google Scholar 

  99. M. A. Eriksson, J. Pitera, P. A. Kollman, Prediction of the binding free energies of new TIBO-like HIV-1 reverse transcriptase inhibitors using a combination of PROFEC, PB/SA, CMC/MD, and free energy calculations. J. Med. Chem. 42, 868–881 (1999).

    Article  PubMed  CAS  Google Scholar 

  100. G. Hummer and A. Szabo, Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl. Acad. Sci. USA, 98, 3658–3661 (2000).

    Article  Google Scholar 

  101. A. R. Leach, Macromolecular modeling: principles and applications. Addison Wesley Longman, 1996.

    Google Scholar 

  102. H. Hu, R. H. Yun, and J. Hermans, Reversibility of free energy simulations: slow growth may have a unique advantage. (With a not on use of Ewald summation.), Mol. Sim., In Press.

    Google Scholar 

  103. B. Isralewitz, M. Gao, and K. Schulten, Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 11, 224–30 (2001).

    Article  PubMed  CAS  Google Scholar 

  104. B. A. Berg and T. Neuhaus, Multicanonical ensemble: A new approach to simulate first-order phase transitions. Phys. Rev. Lett., 68, 9–12 (1992).

    Article  Google Scholar 

  105. A. Pollack, Scientists at work: Leroy Hood; A biotech superstar looks at the bigger picture. The New York Times, April 17, 2001.

    Google Scholar 

  106. C. L. Brooks III, M. Karplus, B. M. Pettitt, Proteins. A theoretical perspectives of dynamics, structure and thermodynamics. Adv. Chem. Phys. 71 (1988).

    Google Scholar 

  107. D. Poland and H. A. Scheraga, Theory of helix-coil transitions in biopolymers. Academic, New York, 1970.

    Google Scholar 

  108. C. Sagui and T. A. Darden, Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Annu. Rev. Biophys. Biomol. Struct. 28, 155–179 (1999).

    Article  PubMed  CAS  Google Scholar 

  109. T. Schlick and W. Olson, Supercoiled DNA energetics and dynamics by computer simulation. J. Mol. Biol. 223, 1089–1119 (1992).

    Article  PubMed  CAS  Google Scholar 

  110. R. Samudrala and M. Levitt, Decoys ‘R’ Us: A database of incorrect conformations to improve protein structure prediction. Protein Sci. 9, 1399–1401 (2000).

    Article  PubMed  CAS  Google Scholar 

  111. M. Vásquez, G. Némethy, and H. A. Scheraga, Conformational energy calculations on polypeptides and proteins. Chem. Rev. 94, 2183–2239 (1994).

    Article  Google Scholar 

  112. A. Abbott, Computer modellers seek out ‘Ten Most Wanted’ proteins. Nature 409, 4 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gan, H.H., Schlick, T. (2002). Methods for Macromolecular Modeling (M3): Assessment of Progress and Future Perspectives. In: Schlick, T., Gan, H.H. (eds) Computational Methods for Macromolecules: Challenges and Applications. Lecture Notes in Computational Science and Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56080-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56080-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43756-7

  • Online ISBN: 978-3-642-56080-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics