Skip to main content

UV Radiation and Arctic Freshwater Zooplankton

  • Chapter
UV Radiation and Arctic Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 153))

Abstract

Arctic freshwaters possess simple zooplankton communities.The high Arctic lakes and ponds are commonly inhabited by only a few species of rotifers, cladocerans and copepods. Dominant inhabitants of high Arctic zooplankton communities are first and foremost members of the circumpolar cladoceran species Daphnia pulex complex (Colbourne et al. 1998; Weider et al. 1999). Members of this complex are recorded in all kinds of habitats, from large ultraoligotrophic lakes to eutrophied (guanotrophic) coastal ponds with rather high salinity.They also inhabit marginal habitats like shallow (<50 cm deep) tundra ponds and tiny moraine ponds at the glacier front. In the harshest and shallowest habitats, representatives of this genus are commonly the only metazoan species present. Daphnia longispina commonly present at somewhat lower latitudes, only occasionally occur in the high Arctic, and then preferably in larger lakes. In addition Bosmina longirostris occur on Greenland (Roen 1962), while B. longispina commonly occur at high latitudes in Alaska (Williamson et al. 2001). The other cladocerans commonly present in the high Arctic are benthic or semibenthic species like Macrothrix hirsuticornis, Chydorus spaericus, Acroperus harpae and Alona guttata (Roen 1962; Halvorsen and Gullestad 1978; Husmann 1978). Representatives of the high Arctic copepods are the calanoids Euruthemora raboti, Diaptomus pribilofensis, Heterocope spp. Limnocalanus spp. as well as the cyclopoids Cyclops abyssorum and Diacyclops crassicaudatus (Roen 1962; Halvorsen and Gullestad 1978; Hobbie 1980; Kling et al. 1992). While not an exhaustive list of Arctic crustaceans, this points to a very limited number of common species. Subarctic areas, on the other hand, may have quite a high species diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abele D, Burlando B, Viarengo A, Pörtner H-O (1998) Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpetNacella concinna.Comp Biochem Physiol 120B:425–435

    CAS  Google Scholar 

  • Alstad NEW, Hessen DO (1999) The effect of caocium concentration on the calcification ofDaphnia magna.Limnol Oceanogr 44:2011–2017

    Article  CAS  Google Scholar 

  • Beaton MJ, Hebert PDN (1988) Geographical parthenogenesis and polyploidy inDaphnia pulex.Am Nat 132:837–845

    Article  Google Scholar 

  • Bertling CJ, Lin F, Girotti AW (1996) Role of hydrogen peroxide in the cytotoxic effects of UVA/B radiation on mammalian cells. Photochem Photobiol 64:137–142

    Article  PubMed  CAS  Google Scholar 

  • Blois MS (1988) The melanins, their synthesis and structure. In: Smith KC (ed) Photo-chemical and photobiological reviews, vol 3. Plenum Press, New York, pp 115–133

    Google Scholar 

  • Borgeraas J, Hessen DO (2000) UV-B induced mortality and antioxidant enzyme activities inDaphnia magnaat different oxygen concentrations and temperatures. J Plankton Res 22:1167–1183

    Article  CAS  Google Scholar 

  • Brehm V (1938) Die Rotfärbung von Hochgebirgsseeorganismen. Biol Rev 13:307–318 Brett MT, Müller-Navarra D (1997) The role of highly unsaturated fatty acids in aquatic food webs. Freshw Biol 38:483–500

    Google Scholar 

  • Brooks JL (1957) The systematics of North AmericanDaphnia.Mem Conn Acad Arts Sci 13:5–180

    Google Scholar 

  • Browman H, Rodriguez CA, Béland F, Cullen J, Davis RF, Kouwenberg JHM, Kuhn PS, McArthus B, Runge JA, St-Pierre J-F, Vetter R (2000) Impact of ultraviolet radiation on marine crustacean zooplankton and ichtyoplankton: a synthesis of results from the estuary and Gulf of St. Lawrence, Canada. Mar Ecol Prog Ser 199:293–311

    Article  Google Scholar 

  • Byron ER (1979) The adaptive significance of zooplankton pigmentation: a new hypothesis. Abstr Bull Ecol Soc Am 60:79

    Google Scholar 

  • Cabrera S, Lopez M, Tartarotti B (1997) Phytoplankton and zooplankton response to ultraviolet radiation in a high-altitude Andean lake: short-versus long-term effects J Plankton Res 19:1565–1582

    Google Scholar 

  • Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol Annu Rev 21:341–453

    Google Scholar 

  • Colbourne JK, Crease TJ, Weider LJ, Hebert PDN, Dufresne F, Hobmk A (1998) Phylogenetics and evolution of a circumArctic species complex (Cladocera:Daphnia pulex).Biol J Linnean Soc 65:347–365

    Google Scholar 

  • Cooper WJ, Lean DRS, Carey JH (1989) Spatial and temporal patterns of hydrogen peroxide in lake waters. Can J Fish Aquat Sci 46:1227–1231

    Article  CAS  Google Scholar 

  • Cooper WJ, Shao CW, Lean DRS, Gordon AS, Scully FE (1994) Factors affecting the distribution of H2O2 in surface waters. Adv Chem Ser 237:391–422

    Article  CAS  Google Scholar 

  • UV Radiation and Arctic Freshwater Zooplankton 181 Cossins AR, Prosser CL (1978) Evolutionary adaptations of membranes to temperature. Proc Natl Acad Sci USA 75:2040–2043

    Article  Google Scholar 

  • Dahlback A, Stamnes K (1991) A new spherical model for computing the radiation fieldavailable for photolysis and heating at twilight. Planet Space Sci 39:671–683

    Article  Google Scholar 

  • Dahlback A, Henriksen T, Larsen SHH, Stamnes K (1989) Biological UV-doses and the effect of an ozon layer depletion. Photochem Photobiol 49:621–625

    Article  Google Scholar 

  • Fuchs J, Packer L (1991) Photooxidative stress in the skin. In: Sies H (ed) Oxidative stress: oxidants and antioxidants. Academic Press, London, pp 559–583

    Google Scholar 

  • Green J (1957) Carotenoids inDaphnia.Proc R Soc Lond Ser B 147:392–401

    Article  CAS  Google Scholar 

  • Hairston NG Jr (1978) Carotenoid photoprotection inDiaptomus kenai.Verh Int Verein Limnol 20:2541–2545

    Google Scholar 

  • Hairston NG Jr (1979) The adaptive significance of color polymorphism in two species ofDiaptomus(Copepoda). Limnol Oceanogr 24:15–37

    Article  CAS  Google Scholar 

  • Hairston NG Jr (1981) The interaction of salinity, predators, light and copepod color. Hydrobiologia 81:151–158

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246:501514

    Google Scholar 

  • Halvorsen G, Gullestad N (1978) Freshwater Crustacea in some areas of Svalbard. Arch Hydrobiol 78:383–395

    Google Scholar 

  • Hebert PDN, Emery CJ (1990) The adaptive significance of cuticular pigmentation inDaphnia.Funct Ecol 4:703–710

    Article  Google Scholar 

  • Hebert PDN, McWalter DB (1983) Cuticular pigmentation in arcticDaphnia:adaptive diversification of asexual lineages. Am Nat 122:286–291

    Article  Google Scholar 

  • Hessen DO (1993) DNA-damage and pigmentation in alpine and Arctic zooplankton as bioindicators of UV-radiation. Verh Int Verein Limnol 25:482–486

    CAS  Google Scholar 

  • Hessen DO (1994)Daphniaresponses to W-light. Arch Hydrobiol Beih Ergeb Limnol 43:185–195

    Google Scholar 

  • Hessen DO (1996) Competitive trade-off strategies in ArcticDaphnialinked to melanism and UV-B stress. Polar Biol 16:573–579

    Article  Google Scholar 

  • Hessen DO, Alstad Rukke NEW (2000) Increased UV-susceptibility inDaphnia atlow calcium concentrations. Limnol Oceanogr 45:1834–1838

    Article  Google Scholar 

  • Hessen DO, Fmrovig P (2001) The photoprotective role of humus-DOC forSelenastrumandDaphnia.Plant Ecol 154:225–235

    Article  Google Scholar 

  • Hessen DO, Sorensen K (1990) Photoprotective pigmentation in alpine zooplankton populations. Aqua Fenn 20:165–170

    CAS  Google Scholar 

  • Hessen DO, Van Donk E (1994) UV-radiation of humic water; effects on primary and secondary production. Water Air Soil Pollut 74:1–14

    Article  Google Scholar 

  • Hessen DO, De Lange HJ,Van Donk E (1997) UV-induced changes in phytoplankton cells and its effects on grazers. Freshw Biol 38:513–524

    Article  Google Scholar 

  • Hessen DO, Borgeraas J, Kessler K, Refseth UH (1999) UV-B susceptibility and photoprotection of ArcticDaphniamorphotypes. Polar Res (in press)

    Google Scholar 

  • Hideg É, Vass I (1996) UV-B induced free radical production in plant leaves and isolated thylakoid membranes. Plant Sci 115:251–260

    Article  CAS  Google Scholar 

  • Hobmk A, Wolf HG (1991) Ecological genetics of NorwegianDaphnia.II. Distribution ofDaphnia longispinagenotypes in relation to short-wave radiation and water colour. Hydrobiologia 225:229–243

    Article  Google Scholar 

  • Hobbie JE (ed) (1980) Limnology of tundra ponds. Barrow, Alaska. Dowden, Hutchinson and Ross, Stroudsburg

    Google Scholar 

  • Hobbie JE (1996) Polar limnology. In: Taub FB (ed) Lakes and reservoirs. Elsevier, Amsterdam, pp 63–86

    Google Scholar 

  • Husmann S, Jacobi HU, Meijering MPD, Reise B (1978) Distribution and ecology of Svalbard’s Cladocera. Verh Int Verein Limnol 20:2452–2456

    Google Scholar 

  • Jones RD (1991) Carbon monoxide and methane distribution and consumption in the photic zone of the Sargasso Sea. Deep Sea Res 38:625–632

    Article  CAS  Google Scholar 

  • Karentz D (1994) Ultraviolet tolerance mechanisms in Antarctic marine organisms. In: Weiler CA, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. Antarctic research series, vol 62. American Geophysical Union, Washington, DC, pp 93–110

    Chapter  Google Scholar 

  • Kerb R, Brockmöller J, Reum T, Roots I (1997) Deficiency of glutathione S-transferases Ti and Ml as heritable factors of increased cutaneous UV sensitivity. J Invest Dermatol 108:229–232

    Article  PubMed  CAS  Google Scholar 

  • Ketterer B, Meyer DJ (1989) Glutathione transferases: a possible role in the detoxication and repair of DNA and lipid hydroperoxides. Mutat Res 214:33–40

    Article  PubMed  CAS  Google Scholar 

  • Kling GW, Fry B, O’Brien WJ (1992) Stable isotopes and planktonic trophic structure in Arctic lakes. Ecology 73:561–566

    Article  Google Scholar 

  • Koehler O (1924) Ãœber das Farbensehen vonDaphnia magnaStrauss. Z Vergl Physiol 1:84–174

    Google Scholar 

  • Krinsky NI (1993) Actions of carotenoids in biological systems. Annu Rev Nutr 13:561587

    Google Scholar 

  • Lean DRS, Cooper WJ, Pick FR (1994) H2O2 formation and decay in lake-waters, chap 12. In: Helz GR et al (eds) Aquatic and surface photochemistry. Lewis, pp 207–214

    Google Scholar 

  • Löffler H (1969) High altitude lakes in the Mt. Everest region. Verh Int Ver Limnol17:373–385

    Google Scholar 

  • Luecke C, O’Brien WJ (1983) Photoprotective pigments in a pond morph ofDaphnia middendorffiana.Arctic 36:365–368

    Google Scholar 

  • Madronich S (1994) Increases in biologically damaging UV-B radiation due to stratospheric ozone reductions: a brief review. Arch Hydrobiol Beih 43:17–30

    Google Scholar 

  • Malloy KD, Holman MA, Mitchell D, Detrich HW III (1997) Solar UVB-induced DNA damage and photoenzymatic DNA repair in Antarctic zooplankton. Proc Nail Acad Sci USA 94:1258–1263

    Article  CAS  Google Scholar 

  • Markager S, Vincent WF (2000) Spectral light attenuation and the absorption of UV and blue light in natural waters. Limnol Oceanogr 45:642–650

    Article  CAS  Google Scholar 

  • Masaki H, Atsumi T, Sakurai H (1995) Detection of hydrogen peroxide and hydroxyl radicals in murine skin fibroblasts under UVB irradiation. Biochem Biophys Res Commun 206:474–479

    Article  PubMed  CAS  Google Scholar 

  • Merker E (1940) Sehen die Daphnien ultraviolettes Licht? Zool Jahrb Abt Allg Zool Physiol Tiere 48:277–348

    Google Scholar 

  • Morris DP, Zagarese H, Williamson CE, Balseiro EG, Hargreaves BR, Modenutti B, Moeller R, Queimalinos C (1995) The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40:1381–1391

    Article  CAS  Google Scholar 

  • Murai NS, Teramura AH, Randall SK (1988) Response differences between two soybean cultivars with contrasting UV-B radiation sensitivities. Photochem Photobiol 48:653–657

    Article  Google Scholar 

  • Neale PJ, Davis RF, Cullen JJ (1998) Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton. Nature 392:585–589

    Article  CAS  Google Scholar 

  • Paanakker JE, Hallegraeff GM (1978) A comparative study of the carotenoid pigmentation of the zooplankton of Lake Marsseveen (Netherlands) and of Lac Pavin (Auvergne, France). I. Chromatographic characterization of carotenoid pigments. Comp Biochem Physiol 60 B:767–772

    Google Scholar 

  • Partali V, Olsen Y, Foss P, Liaaen-Jensen S (1985) Carotenoids in food chain studies. I. Zooplankton(Daphnia magna)response of a unialgal(Scenedesmus acutus)caro-UV Radiation and Arctic Freshwater Zooplankton 183tenoid diet, to spinach, and to yeast diets supplemented with individual carotenoids. Comp Biochem Physiol 82 B:767–772

    Google Scholar 

  • Rae R, Vincent WF (1998) Effects of temperature and ultraviolet radiation on microbial foodweb structure: potential responses to global change. Freshwater Biol 40:747–758

    Article  Google Scholar 

  • Rainuzzo JR, Reitan KI, Olsen Y (1997) The significance of lipids at early stages of marine fish: a review.Aquaculture 155:103–115

    Article  CAS  Google Scholar 

  • Ringelberg J, Keyser AL, Flik BJG (1984) The mortality of ultraviolet radiation in a translucent and in a red morph ofAcanthodiaptomus denticornis(Crustaea, Copepoda) and its possible ecological significance. Hydrobiologia 112:217–222

    Article  Google Scholar 

  • Roen U (1962) Studies on freshwater Entomostraca in Greenland. II. Localities, ecology, and the geographical distribution of species. Medd Gronl 170:1–249

    Google Scholar 

  • Roos J, Vincent WF (1998) Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J Phycol 34:828–835

    Article  Google Scholar 

  • Saegrov H, Hobaek A, L’Abee Lund JH (1996) Vulnerability of melanicDaphniato brown trout predation. J Plankton Res 18:2113–2118

    Article  Google Scholar 

  • Schindler DW, Curtis PJ, Parker BR, Stainton MP (1996) Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature 379:705–708

    Article  CAS  Google Scholar 

  • Scully NM, Lean DRS (1994) The attenuation of ultraviolet radiation in temperate lakes. Arch Hydrobiol Beih 43:135–144

    Google Scholar 

  • Scully NM, McQueen DJ, Lean DRS (1996) Hydrogen peroxide formation: the interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43–75°N gradient. Limnol Oceanogr 41:540–548

    Article  CAS  Google Scholar 

  • Scully NM, Vincent WF, Lean DRS, Cooper WJ (1997) Implications of ozone depletion for surface-water photochemistry: sensitivity of clear lakes. Aquat Sci 59:260–274

    Article  CAS  Google Scholar 

  • Setlow RB (1974) The wavelengths in sunlight effective in producing skin cancer: atheoretical analysis. Proc Natl Acad Sci USA 71:3363–3366

    Article  PubMed  CAS  Google Scholar 

  • Siebeck O, Böhm U (1991) UV-B effects on aquatic animals. Verh Int Verein Limnol 24:2773–2777

    Google Scholar 

  • Siebeck O, Böhm U (1994) Challenges for an appraisal of UV-B effects upon planktonic crustaceans under natural radiation conditions with a non-migrating(Daphnia pulex obtusa)and a migrating cladoceran(Daphnia galeata).Arch Hydrobiol Beih Ergeb Limnol 43:197–206

    Google Scholar 

  • Smith KC, Macagno ER (1990) UV photoreceptors in the compound eye ofDaphnia magna(Crustacea, Branchiopoda). A fourth spectral class in single ommatidia. Comp Physiol A 166:597–606

    CAS  Google Scholar 

  • Sommaruga R, Garcia-Pichel F (1999) UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake. Arch Hydrobiol 144:255–269

    CAS  Google Scholar 

  • Storelli C, Acierno R, Maffia M (1998) Membrane lipid and protein adaptations in antarctic fish. In: Pörtner HO, Playle RC (eds) Cold ocean physiology. Soc Exp Biol Semin Ser 66. Cambridge University Press, Cambridge, pp 166–189

    Chapter  Google Scholar 

  • Storz UC, Paul RJ (1998) Phototaxis in water fleas(Daphnia magna)is differently influenced by visible and UV light. J Comp Physiol A 183:709–717

    Article  Google Scholar 

  • Tartarotti B, Cravero W, Zagarese HE (2000) Biological weighing function for the mortality ofBoeckella gracilipes(Copepoda, Crustacea) derived from experiments with natural solar radiation. Photochem Photobiol (in press)

    Google Scholar 

  • Viarengo A, Abele-Oeschger D, Burlando B (1998) Effects of low temperature on prooxidant processes and antioxidant defence systems in marine organisms. In: Pörtner HO, Playle RC (eds) Cold ocean physiology. Soc Exp Biol Semin Ser 66. Cambridge University Press, Cambridge, pp 212–235

    Chapter  Google Scholar 

  • Wang P, Schellhorn HE (1995) Induction of resistance to hydrogen peroxide and radiation inDeinococcus radiodurans.Can J Microbiol 41:170–176

    Article  PubMed  CAS  Google Scholar 

  • Weider LJ, Beaton MJ, Hebert PDN (1987) Clonal diversity in high-Arctic populations ofDaphnia pulexa polyploid apomictic complex. Evolution 41:1335–1346

    Article  Google Scholar 

  • Weider LJ, Hobmk A, Colbourne JK, Crease T, Dufresne F, Hebert PDN (1999) Holarctic phylogeography of an asexual species complex I. mtDNA variation in ArcticDaphnia.Evolution (in press)

    Google Scholar 

  • Williamson CE, Zagarese HE, Schulze PC, Hargreaves BR, Seva J (1994) The impact of short-term exposure to UV-B radiation on zooplankton communities in north temperate lakes. J Plankton Res 16:205–218

    Article  Google Scholar 

  • Williamson CE, Stemberger RS, Morri DP, Frost TM, Paulsen SG (1996) Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for planktonic communities. Limnol Oceanogr 41:1024–1034

    Article  CAS  Google Scholar 

  • Williamson CE, Olson OG, Lott SE, Walker ND, Engstrom DR, Hargreaves BR (2001) Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology 82:1748–1760

    Article  Google Scholar 

  • Wolf HG, Hobaek A (1986) Ecological genetics of NorwegianDaphnia.I. Genetic difference between pigmented and unpigmented alpine pond populations. Hereditas 104:193–198

    Article  Google Scholar 

  • Yurista PM (1999) Temperature-dependent energy budget of an Arctic CladoceranDaphnia middendorffiana.Freshwater Biol 42:21–34

    Article  Google Scholar 

  • Zafiriou OC, Blough NV, Micinski E, Fister G, Kieber D, Moffett J (1990) Molecular probe systems for reactive transients in natural waters. Mar Chem 30:45–55

    Article  CAS  Google Scholar 

  • Zagarese HE, Williamson CE, Mislivets M, Orr P (1994) The vulnerability ofDaphniatoUV-B radiation in the northeast United States. Arch Hydrobiol Beih 43:207–216

    Google Scholar 

  • Zellmer ID (1995) UV-B-tolerance of alpine and ArcticDaphnia.Hydrobiologia 307:153–159

    Article  Google Scholar 

  • Zellmer ID (1998) The effect of solar UVA and UVB on subarcticDaphnia pulicaria inits natural habitat. Hydrobiologia 379:55–62

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hessen, D.O. (2002). UV Radiation and Arctic Freshwater Zooplankton. In: Hessen, D.O. (eds) UV Radiation and Arctic Ecosystems. Ecological Studies, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56075-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56075-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62655-5

  • Online ISBN: 978-3-642-56075-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics