Skip to main content

Ultraviolet Radiation and the Optical Properties of Sea Ice and Snow

  • Chapter
UV Radiation and Arctic Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 153))

Abstract

The continuing annual appearance of ozone holes in the Arctic and Antarctic results in recurring periods of enhanced incident ultraviolet irradiance at the earth’s surface. Indeed, a recent analysis of incident ultraviolet irradiance measured at Barrow, Alaska, from 1991 to 1995 demonstrates a continuing increase in ultraviolet light levels (Gurney 1998). Much of the area most affected by stratospheric ozone depletion is covered by a seasonal or perennial sea-ice cover, which is a productive ecological habitat. To determine the impact of enhanced incident ultraviolet irradiance on this habitat, an understanding of the interaction of ultraviolet light with snow and sea ice is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrigo KR, Sullivan CW, Kremer JN (1991) A bio-optical model of Antarctic sea ice. J Geophys Res 96:10581–10592

    Article  Google Scholar 

  • Arrigo KR, Kremer JN, Sullivan CW (1993) A simulated Antarctic fast ice ecosystem. J Geophys Res 98(C4):6929–6946

    Article  CAS  Google Scholar 

  • Bohren CF, Barkstrom BR (1974) Theory of the optical properties of snow. J Geophys Res 79(30):4527–4535

    Article  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York, 530 pp

    Google Scholar 

  • Buckley RG, Trodahl HJ (1987)Thermally driven changes in the optical properties of sea ice. Cold Regions Sci Technol 14:201–204

    Article  Google Scholar 

  • Chandrasekhar SC (1960) Radiative transfer. Dover, New York, 393 pp

    Google Scholar 

  • Fritsen CH, Iturriaga R, Sullivan CW (1992) Influence of particulate matter on spectral irradiance fields and energy transfer in the eastern Arctic Ocean. Ocean Optics 11 Proc SPIE Int Soc Opt Eng 1750:527–541

    Google Scholar 

  • Gow AJ, Tucker WB III (1990) Sea ice in the polar regions. In: Smith WO (ed) Polar

    Google Scholar 

  • oceanography, part A. Physical science. Academic Press, San Diego, pp 47–122 Grenfell TC (1979) The effects of ice thickness on the exchange of solar radiation over the polar oceans. J Glaciol 22:305–320

    Google Scholar 

  • Grenfell TC (1983) A theoretical model of the optical properties of sea ice in the visible and near infrared. J Geophys Res 88:9723–9735

    Article  CAS  Google Scholar 

  • Grenfell TC (1991) Radiative transfer model for sea ice with vertical structure variations. J Geophys Res 96:16991–17001

    Article  Google Scholar 

  • Grenfell TC, Hedrick D (1983) Scattering of visible and near infrared radiation by NaC1 ice and glacier ice. Cold Regions Sci Technol 8:119–127

    Article  Google Scholar 

  • Grenfell TC, Maykut GA (1977) The optical properties of ice and snow in the Arctic Basin. J Glaciol 18:445–463

    Google Scholar 

  • Grenfell TC, Perovich DK (1981) Radiation absorption coefficients of polycrystalline ice from 400–1400 nm. J Geophys Res 86:7447–7450 [1984 on pp. 6, 8,17]

    Google Scholar 

  • Grenfell TC, Warren SG, Mullen PC (1994) Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J Geophys Res 99:18669–18684

    Article  Google Scholar 

  • Gurney KR (1998) Evidence for increasing ultraviolet irradiance at Point Barrow, Alaska. Geophys Res Lett 25:903–906

    Article  CAS  Google Scholar 

  • Heibling EW, Villafane V, Holm-Hansen 0 (1994) Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. Antarctic Res Ser 62:207–228

    Chapter  Google Scholar 

  • Jin Z, Stamnes K, Weeks WF (1994) The effect of sea ice on the solar energy budget in the atmosphere-sea ice-ocean system: a model study. J Geophys Res 99(C12):25281– 25294

    Google Scholar 

  • Karentz D (1994) Ultraviolet tolerance mechanisms in Antarctic marine organisms. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. Antarct Res Ser 62:93–110

    Chapter  Google Scholar 

  • Liou KN (1974) Analytic two-stream and four-stream solutions for radiative transfer. J Atmos Sci 31:1473–1475

    Article  Google Scholar 

  • Maykut GA, Grenfell TC (1975) The spectral distribution of light beneath first-year sea ice in the Arctic Ocean. Limnol Oceanogr 20:554–563

    Article  Google Scholar 

  • Maykut GA, Light B (1995) Refractive index measurements in freezing sea ice and sodium chloride brines. Appl Optics 34:950–961

    Article  CAS  Google Scholar 

  • McKenzie RL, Paulin KJ, Madronich S (1998) Effects of snow cover on UV irradiance and surface albedo: a case study. J Geophys Res 103:28785–28792

    Article  CAS  Google Scholar 

  • Mobley CD (1994) Light and water, radiative transfer in natural waters. Academic Press, San Diego, 592 pp

    Google Scholar 

  • Mobley CD, Cota G, Grenfell TC, Maffione RA, Pegau WS, Perovich DK (1997) Modeling

    Google Scholar 

  • light propagation in sea ice. IEEE Trans Geosci Remote Sens 36:1743–1749

    Google Scholar 

  • Perovich DK (1990) Theoretical estimates of light reflection and transmission by

    Google Scholar 

  • spatially complex and temporally varying sea ice covers. J Geophys Res 95:9557–9567 Perovich DK (1993) A theoretical model of ultraviolet light transmission through Ant-

    Google Scholar 

  • arctic sea ice. J Geophys Res 98:22579–22587

    Google Scholar 

  • Perovich DK (1995) Observations of ultraviolet light reflection and transmission by first-year sea ice. Geophys Res Lett 22:1349–1352

    Article  Google Scholar 

  • Perovich DK (1996) The optical properties of sea ice. CRREL Monogr 96–1,25 pp Perovich DK, Govoni JW (1991) Absorption coefficients of ice from 250 to 400 nm. Geophys Res Lett 18:1233–1235

    Article  Google Scholar 

  • Perovich DK, Grenfell TC (1981) Laboratory studies of the optical properties of young sea ice. J Glaciol 27:331–346

    Google Scholar 

  • Perovich DK, Grenfell TC (1982) A theoretical model of radiative transfer in young sea ice. J Glaciol 28:341–357

    Google Scholar 

  • Perovich DK, Roesler CS, Pegau WS (1998a) Variability in sea ice optical properties. J Geophys Res 103:1193–1209

    Article  Google Scholar 

  • Perovich DK, Barber DG, Cota G, Gow AJ, Grenfell TC, Longacre J, Maffione R, Mobley CD, Onstott RG, Pegau WS, Roesler CS (1998b) Field observations of the electromagnetic properties of first-year sea ice. IEEE Trans Geosci Remote Sens 36:1633– 1641

    Google Scholar 

  • Perovich DK et al. (1999a) Year on ice gives climate insights. EOS Trans Am Geophys Union 80:481,485–486

    Google Scholar 

  • Perovich DK, Grenfell TC, Light B, Richter-Menge JA, Sturm M, Tucker WB III, Eicken H, Maykut GA, Elder B (1999b) SHEBA: snow and ice studies. Cold Regions Research and Engineering Laboratory, CD-ROM, October

    Google Scholar 

  • Perovich DK, Grenfell TC, Light B, Hobbs PV (2001) The seasonal evolution of Arctic sea ice albedo. J Geophys Res (in press

    Google Scholar 

  • Prezelin BB, Boucher NP, Smith RC (1994) Marine primary production under the influence of the Antarctic ozone hole: ice colors `90. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. Antarct Res Ser 62:159–186

    Google Scholar 

  • Prezelin BB, Moline MA, Matlick HA (1998) Icecolors `93: spectral UV radiation effects on Antarctic frazil ice algae. In: Lizotte MP, Arrigo KR (eds) Antarctic sea ice: biological processes, interactions, and variability. Antarct Res Ser 73:45–83

    Chapter  Google Scholar 

  • Quakenbush T, Wendler G (1994) Ultraviolet (A) and shortwave radiation on the Juneau Icefield, Alaska. Polarforschung 62:77–82

    Google Scholar 

  • Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200800 nm).Appl Optics 20:177–184

    Google Scholar 

  • Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, Maclntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion:

    Google Scholar 

  • Ultraviolet Radiation and the Optical Properties of Sea Ice an Snow 89

    Google Scholar 

  • ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959

    Google Scholar 

  • Sturm M, Holmgren J, Perovich D (2001) The winter snow cover on the sea ice of the Arctic Ocean at SHEBA: temporal evolution and spatial variability. J Geophys Res (in press

    Google Scholar 

  • Trodahl HJ, Buckley RG (1989) Ultraviolet levels under sea ice during the Antarctic spring. Science 245:194–195

    Article  PubMed  CAS  Google Scholar 

  • Trodahl HJ, Buckley RG (1990) Enhanced ultraviolet transmission of Antarctic sea ice during the austral spring. Geophys Res Lett 17:2177–2179

    Article  Google Scholar 

  • Trodahl HJ, Buckley RJ, Brown S (1987) Diffusive transport of light in sea ice. Appl Optics 26:3005–3011

    Article  CAS  Google Scholar 

  • Tucker WB III, Perovich DK, Gow AJ, Weeks WF, Drinkwater MR (1993) Physical properties of sea ice relevant to remote sensing. In: Carsey F (ed) The remote sensing of sea ice, chap 2. AGU Press, Washington, DC, 462 pp

    Google Scholar 

  • Van de Hulst HC (1981) Light scattering by small particles. Dover, New York, 470 pp

    Google Scholar 

  • Vernet M, Brody EA, Hom-Hansen O, Mitchell BG (1994) The response of Antarctic phytoplankton to ultraviolet radiation: absorption, photosynthesis, and taxonomic composition. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. Antarct Res Ser 62:143–158

    Chapter  Google Scholar 

  • Warren SG (1982) Optical properties of snow. Rev Geophys Space Phys 20:67–89 Warren SG, Radinov VF, Bryazgin NN, Aleksandrov YI, Colony R (1999) Snow depth on Arctic sea ice. J Climate 12.1814–1829

    Google Scholar 

  • Weeks WF (1998) Growth conditions and the structure and properties of sea ice. In: Lepparanta M (ed) The physics of ice-covered seas. Helsinki University Press, Helsinki, pp 25–104

    Google Scholar 

  • Weeks WF, Ackley SF (1982) The growth, structure, and properties of sea ice. CRREL monograph 82–1. Cold Regions Research and Engineering Laboratory, Hanover, 130 pp

    Google Scholar 

  • Wendler G, Quakenbush T (1993) Ultraviolet radiation and its extinction in Antarctic sea ice. Antarct J 84–85

    Google Scholar 

  • Wiscombe WJ, Warren SG (1980) A model for the spectral albedo of snow. 1. Pure snow. J Atmos Sci 37(12):2712–2733

    Article  Google Scholar 

  • Zeebe RE, Eicken H, Robinson DH, Wolf-Gladrow D, Dieckmann GS (1996) Modeling the heating and melting rate of sea ice through light absorption by microalgae. J Geophys Res 101:1163–1181

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perovich, D.K. (2002). Ultraviolet Radiation and the Optical Properties of Sea Ice and Snow. In: Hessen, D.O. (eds) UV Radiation and Arctic Ecosystems. Ecological Studies, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56075-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56075-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62655-5

  • Online ISBN: 978-3-642-56075-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics