Skip to main content

Spectral Properties and UV Attenuation in Arctic Freshwater Systems

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 153))

Abstract

Arctic biota has during the evolutionary process adapted to an extreme geophysical environment with low temperatures, extensive snow cover and a large annual variation in solar radiation. During recent years, it has become evident that climatic and stratospheric changes impose new challenges for the Arctic ecosystems with expected major changes and increased variability of the climatic parameters, as well as significant increases in biologically damaging UV radiation, especially in the Arctic (IPCC 2000). Since the Antarctic ozone hole was discovered (Farman et al. 1985), significant ozone depletion events have been detected within the Arctic polar stratospheric vortex during the recent years (Rex et al. 1997). As a consequence, the surface UV radiation has also increased (Madronich et al. 1994, 1998).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bricaud A, Morel A, Prieur L (1981) Absorption by dissolved organic matter of the sea(yellow substance) in the UV and visible domains. Limnol Oceanogr 26:43–53

    Article  CAS  Google Scholar 

  • Dai A, Fung IY, Del Genio AD (1997) Surface observed land precipitation variations during 1900–1988. J Climate 10.2943–2962

    Article  Google Scholar 

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal CLOx/Nox interaction. Nature 315:207–210

    Article  CAS  Google Scholar 

  • Gjessing ET, Alberts JJ, Bruchet A, Egeberg PK, Lydersen E, McGown LB, Mobed JJ, Munster U, Pempkowiak J, Perdue M, Ratnawerra H, Rybacki D, Takacs M, AbbtBraun G (1998) Multi-method characterization of natural organic matter isolated from water: characterization of reverse osmosis isolates from water of two semi-identical dystrophic lakes basins in Norway. Water Res 10:3108–3124

    Article  Google Scholar 

  • Green SA, Blough NV (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matters in natural waters Limnol Oceanogr 39:1903–1916

    Google Scholar 

  • Hanssen-Bauer I, Fell-land EJ (1998) Long term trends in precipitation and temperature in the Norwegian Arctic: can they be explained by changes in atmospheric circulation patterns? Climate Res 10:143–153

    Article  Google Scholar 

  • Hanssen-Bauer I, Fell-land EJ, Tveito OA, Nordli PO (1997) Estimating regional precipitation trends - comparison of two methods. Nordic Hydrol 28:21–36

    CAS  Google Scholar 

  • Hessen DO (1993) DNA-damage and pigmentation in alpine and arctic zooplankton as bioindicators of UV-radiation. Verh Int Verein Limnol 25:482–486

    CAS  Google Scholar 

  • Hessen DO (1996) Competitive trade-off strategies in Arctic Daphnia linked to melanism and UV-B stress. Polar Biol 16:573–579

    Article  Google Scholar 

  • Hessen DO, Færovig PJ (2001) The photo-protective role of humus-DOC forSelenastrumandDaphnia.Plant Ecol (in press)

    Google Scholar 

  • Hessen DO, Borgeraas J, Rbaek JB (2001) Responses in pigmentation and anti-oxidant expression in ArcticDaphniaalong gradients of DOC and W exposure. J Plankton Res (submitted)

    Google Scholar 

  • Hobbie JE (1996) Polar limnology. In: Taub FB (ed) Lakes and reservoirs. Elsevier, Amsterdam, pp 63–86

    Google Scholar 

  • Howard-Williams C, Vincent WF (1985) Optical properties of New Zealand lakes. II. Underwater spectral characteristics and effects on PAR attenuation. Arch Hydrobiol 104:441–457

    Google Scholar 

  • Hulme M (1995) Estimating global changes in precipitation. Weather 50(2):34–42

    Article  Google Scholar 

  • IPCC (2000) Third Assessment Report, Summary for Policymakers, WMO

    Google Scholar 

  • Kattenberg A, Gruza GV, Jouzel J, Karl TR, Ogallo LA, Parker DE (1996) Observed climate variability and change. In: Hougton JT, Maira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995 - the science of climate change. Cambridge University Press, Cambridge, pp 289–357

    Google Scholar 

  • Kirk JTO (1983) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Laurion I, Vincent WF, Lean RS (1997) Underwater ultraviolet radiation: development of spectral models for northern high latitude lakes. Photochem Photobiol 65(1):107–114

    CAS  Google Scholar 

  • Laurion I, Ventura M, Catalan J, Psenner R, Sommaruga R (2000) Attenuation of ultraviolet radiation in mountain lakes: factors controlling the among-and within-lake variability. Limnol Oceanogr 45:1274–1288

    Article  Google Scholar 

  • Madronich S (1994) Increases in biologically damaging UV-B radiation due to strato-spheric ozone reductions: a brief review. Arch Hydrobiol Beih Ergeb Limnol 43:17–30

    Google Scholar 

  • Madronich S, McKenzie RL, Björn LO, Caldwell MM (1998) Changes in biological active ultraviolet radiation reaching the Earth’s surface. J Photochem Photobiol B 46:5–19

    Article  PubMed  CAS  Google Scholar 

  • McKnight DM, Andrews ED, Spaulding SA, Aiken GR (1994) Aquatic fulvic acids in algal-rich Antarctic ponds. Limnol Oceanogr 39:1972–1979

    Article  Google Scholar 

  • Morris PM, Zagarese H, Williamson CE, Esteban GB, Hargreaves BR, Modenutti B, Moeller R, Queimalinos C (1995) The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40(8):1381–1391

    Article  CAS  Google Scholar 

  • Quickenden TI, Irvin JA (1980) The ultraviolet absorption spectrum of liquid water. J Chem Phys 72:4416–4428

    Article  CAS  Google Scholar 

  • Rex M, Harris NRP, Gathen P von der, Lehmann R, Braathen GO, Reimer E, Beck A, Chipperfield MP, Alfier R, Allaart M, O’Connor F, Dier H, Dorokhov V, Fast H, Gil M, Kyrö E, Litynska Z, Mikkelsen IS, Molyneux MG, Nakane H, Notholt J, Rummukainen M, Viatte P, Wenger J (1997) Prolonged stratospheric ozone loss in the 1995–96 Arctic winter. Nature 389:835–838

    Article  CAS  Google Scholar 

  • Schindler DW, Curtis PJ, Parker BR, Stainton MP (1996) Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature 379:705–708

    Article  CAS  Google Scholar 

  • Scully NM, Lean DRS (1994) The attenuation of ultraviolet radiation in temperate lakes. Arch Hydrobiol Beih Ergeb Limnol 43:135–144

    Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Climatic Change 46.159–207

    Article  Google Scholar 

  • Smith RC, Prezélin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz T, Maclntyre S, Matlick A, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959

    Article  PubMed  CAS  Google Scholar 

  • Sommeruga R, Psenner R, Schafferer E, Koinig KA, Sommeruga-Wögrath S (1999) Dissolved organic carbon concentration and phytoplankton biomass in high-mountain lakes of the Austrian Alps: potential effect of climatic warming on UV underwater attenuation. Arctic Antarct Alp Res 31(3):247–253

    Article  Google Scholar 

  • Vincent WF, Rae R, Laurion I, Howard-Williams C, Priscu JC (1998) Transparency of Antarctic ice-covered lakes to solar UV-radiation. Limnol Oceanogr 43:618–624

    Article  Google Scholar 

  • Vinebrooke RD, Leavitt PR (1999) Differential responses of littoral communities to ultraviolet radiation in an Alpine lake. Ecology 80(1):223–237

    Article  Google Scholar 

  • Williamson CE, Morris DP (1999) Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnol Oceanogr 44(3):795–803

    Article  CAS  Google Scholar 

  • Williamson CE, Stemberger RS, Morris DP, Frost TM, Paulsen SG (1996) Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for plankton communities. Limnol Oceanogr 41(5):1024–1034

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ørbæk, J.B., Svenøe, T., Hessen, D.O. (2002). Spectral Properties and UV Attenuation in Arctic Freshwater Systems. In: Hessen, D.O. (eds) UV Radiation and Arctic Ecosystems. Ecological Studies, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56075-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56075-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62655-5

  • Online ISBN: 978-3-642-56075-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics