Skip to main content

UV Radiation and Arctic Marine Macroalgae

  • Chapter
UV Radiation and Arctic Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 153))

Abstract

Marine macroalgae are efficient primary producers and an important source of natural products. As a key component of coastal ecosystems, they buffer changes in nutrient concentrations in the water column and stabilise sediments. Macroalgae show distinct zonation patterns, with a preference to establish on hard bottom at different water depths. The environment of Arctic coastal ecosystems is highly variable (Kirst and Wiencke 1995). Especially, algae from the intertidal zone have to withstand multiple changes in abiotic factors due to tidal changes (Davison and Pearson 1996). During emersion, these species have to resist desiccation, high solar irradiances, changes in salinity and temperature and, under conditions of low air temperatures, also freezing (Dudgeon et al. 1989, 1995). In the field, the species inhabiting the intertidal (e.g. Fucus distichus) or the upper sublittoral zone (e.g. Alaria esculenta, Devaleraea ramentacea) also frequently have to cope with temporarily high ultraviolet radiation (UVR) and high intensities of photosynthetically active radiation (PAR). In contrast, species restricted to deep waters (such as Ptilota plumosa, Phycodrys rubens, Laminaria solidungula) are hardly exposed to high irradiance as they are protected by the water column above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams NL, Shick JM (1996) Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchinStrongylocentrotus droebachiensis.Photochem Photobiol 64:149–158

    Article  CAS  Google Scholar 

  • Aguilera J, Karsten U, Lippert H, Vögele B, Philipp E, Hanelt D, Wiencke C (1999) Effects of solar radiation on growth, photosynthesis and respiration of marine macroalgae from the Arctic. Mar Ecol Prog Ser 191:109–119

    Article  Google Scholar 

  • Beggs CJ, Schneider-Ziebert U, Wellmann E (1986) UV-B radiation and adaptive mechanisms in plants. In: Worrest RC, Caldwell MM (eds) Stratospheric ozone reduction, solar ultraviolet radiation and plant life. NATO ASI Series, vol G8. Springer, Berlin Heidelberg New York, pp 235–250

    Chapter  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1998a) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605

    Article  Google Scholar 

  • Bischof K, Hanelt D, Tug H, Karsten U, Brouwer PEM, Wiencke C (1998b) Acclimation of brown algal photosynthesis to ultraviolet-radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395

    Article  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1999) Acclimation of maximal quantum yield of photosynthesis in the brown algaAlaria esculentaunder high light and UV radiation. Plant Biol 1:435–444

    Article  CAS  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (2000) UV-effects on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211:555–562

    Article  PubMed  CAS  Google Scholar 

  • Björn LO, Callaghan TV, Gehrke C, Johanson U, Sonesson M (1999) Ozone depletion, ultraviolet radiation and plant life. Chemosphere Global Change Sci 1:449–454

    Article  Google Scholar 

  • Bornman JF (1989) Target sites of 1JV-radiation in photosynthesis of higher plants. J Photochem Photobiol B Biol 4:145–158

    Article  CAS  Google Scholar 

  • Buchel C, Wilhelm C (1993) In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: progress, problems and perspectives. Photochem Photobiol 58:137148

    Google Scholar 

  • Chapman ARO, Lindley JE (1980) Seasonal growth ofLaminaria solidungulain the Canadian high Arctic in relation to irradiance and dissolved nutrient concentrations. Mar Biol 57:1–5

    Article  CAS  Google Scholar 

  • Clendennen SK, Zimmerman RC, Powers DA,Alberte RS (1996) Photosynthetic response of the giant kelpMacrocystis pyrifera(Phaeophyceae) to ultraviolet radiation. J Phycol 32:614–620

    CAS  Google Scholar 

  • Davison IR, Pearson GA (1996) Stress tolerance of intertidal seaweeds. J Phycol 32:197211

    Google Scholar 

  • Dring MJ, Makarov V, Schoschina E, Lorenz M, Lüning K (1996a) Influence of ultraviolet-radiation on chlorophyll fluorescence and growth in different life history stages of three species ofLaminaria.Mar Biol 126:183–191

    Article  CAS  Google Scholar 

  • Dring MJ, Wagner A, Boeskov J, Lüning K (1996b) Sensitivity of intertidal and subtidal red algae to UVA and UVB radiation, as monitored by chlorophyll fluorescence measurements: influence of collection depth and season, and length of irradiation. Eur J Phycol 31:293–302

    Article  Google Scholar 

  • Dudgeon SR, Davison IR, Vadas RL (1989) Effect of freezing on photosynthesis of intertidal macroalgae: relative tolerance ofChondrus crispusandMastocarpus stellatus (Rhodophyta).Mar Biol 101:193–206

    Article  Google Scholar 

  • Dudgeon SR, Kübler JE, Vadas RL, Davison IR (1995) Physiological responses to environmental variation in intertidal red algae: does thallus morphology matter? Mar Ecol Prog Ser 117:193–206

    Article  Google Scholar 

  • Dunlap WC, Shick JM (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol 131:418–430

    Article  Google Scholar 

  • Dunton KH (1985) Growth of dark-exposedLaminaria saccharina(L.) Lamour. andLaminaria solidungulaJ. Ag. (Laminariales: Phaeophyta) in the Alaskan Beaufort Sea. J Exp Mar Biol Ecol 94:181–189

    Article  Google Scholar 

  • Dunton KH (1990) Growth and production inLaminaria solidungula:relation to continuous underwater light levels in the Alaskan high Arctic. Mar Biol 106:297–304

    Article  Google Scholar 

  • Dunton KH, Dayton PK (1995) The biology of high latitude kelp. In: Skjoldal HR, Hopkins C, Erikstad KE, Leinaas HP (eds) Ecology of fjords and coastal waters. Elsevier, Amsterdam, pp 499–507

    Google Scholar 

  • Dunton KH, Schell DM (1986) Seasonal carbon budget and growth ofLaminaria solidungulain the Alaskan high Arctic. Mar Ecol Prog Ser 31:57–66

    Article  Google Scholar 

  • Garcia-Pichel F (1998) Solar ultraviolet and the evolutionary history of cyanobacteria. Origins Life Evol Biosphere 28:321–347

    Article  CAS  Google Scholar 

  • Gómez I, Wiencke C, Weykam G (1995a) Seasonal photosynthetic characteristics ofAscoseira mirabilis(Ascoseirales, Phaeophyceae) from King George Island, Antarctica. Mar Biol 123:167–172

    Article  Google Scholar 

  • Gómez I, Thomas DN, Wiencke C (1995b) Longitudinal profiles of growth, photosynthesis and light independent carbon fixation in the Antarctic brown algaAscoseira mirabilis.Bot Mar 38:157–164

    Article  Google Scholar 

  • Grobe CW, Murphy TM (1994) Inhibition of growth ofUlva expansa(Chlorophyta) by ultraviolet-B radiation. J Phycol 30:783–790

    Article  Google Scholar 

  • Häder DP, Häder M (1988) Inhibition of motility and phototaxis in the green flagellateEuglena gracilisby UV-B radiation. Arch Microbiol 32:903–906

    Google Scholar 

  • Han T (1996a) Effect of ultraviolet-B radiation onUlva pertusaKjellman (Chlorophyta) I. Growth and pigment content. Algae (Kor J Phycol) 11:155–159

    Google Scholar 

  • Han T (1996b) Far-UV action on growth, pigmentation and photosynthesis ofUlva lactuca(Chlorophyta). Algae (Kor J Phycol) 11:203–206

    Google Scholar 

  • Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol 131:361–369

    Article  Google Scholar 

  • Hanelt D, Wiencke C, Nultsch W (1997a) Influence of UV radiation on the photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol B Biol 38:40–47

    Article  CAS  Google Scholar 

  • Hanelt D, Wiencke C, Karsten U, Nultsch W (1997b) Photoinhibition and recovery after high light stress in different developmental and life-history stages ofLaminaria saccharina(Phaeophyta). J Phycol 33:387–395

    Article  Google Scholar 

  • Hanelt D, Tug H, Bischof K, Groß C, Lippert H, Sawall T, Wiencke C (2000) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658

    Article  Google Scholar 

  • Helbling EW, Chalker BE, Dunlap WC, Holm-Hansen O, Villafane VE (1996) Photoacclimation of Antarctic diatoms to solar ultraviolet radiation. J Exp Mar Biol Ecol 204:85101

    Article  Google Scholar 

  • Holm-Hansen O, Mitchell BG,Vernet M (1989) Ultraviolet radiation in Antarctic waters: effect on rates of primary production. Antarct J US 24:177–178

    Google Scholar 

  • Ito H, Kudoh S (1997) Characteristics of water in Kongsfjorden, Svalbard. Proc NIPR Symp Polar Meteorol Glaciol 11:211–232

    Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Amsterdam

    Google Scholar 

  • Jordan BB, He J, Chow WS, Anderson JM (1992) Changes in mRNA levels and polypeptide subunits of ribulose-1,5-bisphosphate carboxylase in response to supplementary ultraviolet-B radiation. Plant Cell Environ 15:91–98

    Article  CAS  Google Scholar 

  • Karentz D (1994) Ultraviolet tolerance mechanisms in Antarctic marine organisms. Antarct Res Ser 62:93–110

    Article  Google Scholar 

  • Karsten U, Wiencke C (1999) Factors controlling the formation of UV-absorbing mycosporine-like amino acids in the marine red algaPalmaria palmatafrom Spitsbergen (Norway). J Plant Physiol 155:407–415

    Article  CAS  Google Scholar 

  • Karsten U, Sawall T, Hanelt D, Bischof K, Figueroa FL, Flores-Moya A, Wiencke C (1998) An inventory of UV-absorbing mycosporine-like amino acids in macroalgae from polar to warm-temperate regions. Bot Mar 41:443–453

    Article  CAS  Google Scholar 

  • Karsten U, Bischof K, Hanelt D, Tug H, Wiencke C (1999) The effect of UV radiation on photosynthesis and UV-absorbing substances in the endemic Arctic macroalgaDevaleraea ramentacea(Rhodophyta). Physiol Plant 105:58–66

    Article  CAS  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31:181–199

    Article  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Langer J (1999) Messungen des arktischen stratosphärischen Ozons: Vergleich der Ozon-messungen in Ny Alesund, Spitzbergen, 1997 und 1998. Ber Polarforsch 322:1–222

    Google Scholar 

  • Larkum AWD, Wood WF (1993) The effect of UV-B radiation on photosynthesis and respiration of phytoplankton, benthic macroalgae and seagrasses. Photosynth Res 36:17–23

    Article  CAS  Google Scholar 

  • Luning K (1980) Critical levels of light and temperature regulating the gametogenesis of threeLaminariaspecies (Phaeophyceae). J Phycol 16:1–15

    Article  Google Scholar 

  • Maegawa M, Kunieda M, Kida W (1993) The influence of ultraviolet radiation on the photosynthetic activity of several red algae from different depths. Jpn J Phycol 41:207–214

    CAS  Google Scholar 

  • Makarov M (1999) Influence of ultraviolet radiation on the growth of the dominant macroalgae of the Barents Sea. Chemosphere Global Change Sci 1:461–467

    Article  Google Scholar 

  • McMinn A, Ashworth C, Ryan K (1999) Growth and productivity of Antarctic sea ice algae under PAR and UV irradiances. Bot Mar 42:401–407

    Article  CAS  Google Scholar 

  • Mehlum F (1991) Breeding population size of the common eiderSomateria mollissimain Kongsfjorden, Svalbard, 1981–1987. Norsk Polarinst Skrifter 195:21–29

    Google Scholar 

  • Molina X, Montecino V (1996) Acclimation to UV irradiance inGracilaria chilensisBird, McLachlan and Oliveira (Gigartinales, Rhodophyta). Hydrobiologia 326/327:415–420

    Article  Google Scholar 

  • Miller R, Crutzen PJ, Grooß JU, Brühl C, Russel JM, Gernandt H, McKenna DS, Tuck AF (1997) Severe ozone loss in the Arctic during the winter of 1995–96. Nature 389:709712

    Google Scholar 

  • Nogués S, Baker NR (1995) Evaluation of the role of damage to photosystem II in the inhibition of CO2 assimilation in pea leaves on exposure to UV-B radiation. Plant Cell Environ 18:781–787

    Article  Google Scholar 

  • Pavia H, Cervin G, Lindgren A, Aberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown algaAscophyllum nodosum.Mar Ecol Prog Ser 157:139–146

    Article  CAS  Google Scholar 

  • Rex M, Harris NRP, Gathen P von der, Lehmann R, Braathen GO, Reimer E, Beck A, Chipperfield MP, Alfier R, Allaart M, O’Connor F, Dier H, Dorokhov V, Fast H, Gil M, Kyrö E, Litynska Z, Mikkelsen IS, Molyneux MG, Nakane H, Notholt J, Rummukainen M, Viatte P, Wenger J (1997) Prolonged stratospheric ozone loss in the 1995–96 Arctic winter. Nature 389:835–838

    Article  CAS  Google Scholar 

  • Riegger L, Robinson D (1997) Photoinduction of UV-absorbing compounds in Antarctic diatoms andPhaeocystis antarctica.Mar Ecol Prog Ser 160:13–25

    Article  Google Scholar 

  • Sagert S, Forster RM, Feuerpfeil P, Schubert H (1997) Daily course of photosynthesis and photoinhibition inChondrus crispus(Rhodophyta) from different shore levels. Eur J Phycol 32:363–371

    Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. Ecol Stud 100:49–70

    CAS  Google Scholar 

  • Sinha RP, Klisch M, Gröninger A, Häder DP (1998) Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae. J Photochem Photobiol B Biol 47:83–94

    Article  CAS  Google Scholar 

  • Sisson WB (1986) Effects of UV-B radiation on photosynthesis. In: Worrest RC, Caldwell MM (eds) Stratospheric ozone reduction, solar ultraviolet radiation and plant life. NATO ASI Series, vol G8. Springer, Berlin Heidelberg New York, pp 161–169

    Chapter  Google Scholar 

  • Stengel DB, Dring MJ (1998) Seasonal variation in the pigment content and photosynthesis of different thallus regions ofAscophyllum nodosum(Fucales, Phaeophyta) in relation to position in the canopy. Phycologia 37:259–268

    Article  Google Scholar 

  • Svendsen P (1959) The algal flora of Spitsbergen. Norsk Polarinst Skrifter 116

    Google Scholar 

  • Vass I (1997) Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus. In: Pessarakli M (ed) Handbook of photosynthesis. Dekker, New York, pp 931–949

    Google Scholar 

  • Wiencke C, Gómez I, Pakker H, Flores-Moya A, Altamirano M, Hanelt D, Bischof K, Figueroa FL (2000) Impact of UV radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: implications for depth zonation. Mar Ecol Prog Ser 197:217–229

    Article  Google Scholar 

  • Wood WF (1987) Effect of solar ultra-violet radiation on the kelpEcklonia radiata.Mar Biol 96:143–150

    Article  Google Scholar 

  • Wood WF (1989) Photoadaptive response of the tropical red algaEucheuma striatumSchmitz (Gigartinales) to ultraviolet radiation. Aquat Bot 33:41–51

    Article  Google Scholar 

  • Yakovleva IM, Dring MJ, Titlyanov EA (1998) Tolerance of North Sea algae to UV and visible radiation. Russ J Plant Physiol 45:45–54

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bischof, K., Hanelt, D., Wiencke, C. (2002). UV Radiation and Arctic Marine Macroalgae. In: Hessen, D.O. (eds) UV Radiation and Arctic Ecosystems. Ecological Studies, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56075-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56075-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62655-5

  • Online ISBN: 978-3-642-56075-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics