Skip to main content

UV Radiation Effects on Phytoplankton Primary Production: A Comparison Between Arctic and Antarctic Marine Ecosystems

  • Chapter
Book cover UV Radiation and Arctic Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 153))

Abstract

Polar oceans are major water bodies that sustain a considerable portion of the world’s primary production (Smith 1991; Longhurst et al. 1995). Phytoplankton net primary production is calculated to be about 1 to 9 GT C/year in the Arctic and Southern Oceans, respectively, which corresponds roughly to 20% of the world’s aquatic production (Longhurst et al. 1995; Behrenfeld and Falkowski 1997). Throughout this chapter, we will refer indistinctly to Southern Ocean or Antarctic waters to indicate waters south of the Antarctic Convergence (polar front). Solar radiation and water temperature are two of the most important abiotic factors known to affect phytoplankton primary productivity in polar waters (Sakshaug and Holm-Hansen 1984). It is expected that any stress factor that affects these autotrophic organisms will cause a significant impact in higher trophic levels of the aquatic food web (Häder et al. 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackley SF, Buck KR, Taguchi S (1979) Standing crop of algae in the sea ice of the Weddell Sea region. Deep-Sea Res 26A:269–281

    Article  Google Scholar 

  • Adams NL, Shick JM (1996) Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchinStronglyocentrotus droebachiensis.Photochem Photobiol 64:149–158

    Article  CAS  Google Scholar 

  • Alexander V, Chapman T (1981) The role of epontic algal communities in Bering Sea ice. In: Hood DW, Calder JA (eds) The Eastern Bering Sea Shelf: oceanography and resources II. University of Washington Press, Washington, DC, pp 773–780

    Google Scholar 

  • Atkinson RJ, Matthews WA, Newman PA, Plumb RA (1989) Evidence of the mid-latitude impact of Antarctic ozone depletion. Nature 340:290–294

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20

    Article  CAS  Google Scholar 

  • Behrenfeld M, Hardy J, Gucinski H, Hanneman A, Lee H II, Wones A (1993) Effects of ultraviolet-B radiation on primary production along latitudinal transects in the South Pacific Ocean. Mar Environ Res 35:349–363

    Article  Google Scholar 

  • Behrenfeld MJ, Lean DRS, Lee H (1995) Ultraviolet-B radiation effects on inorganic nitrogen uptake by natural assemblages of oceanic plankton. J Phycol 31:25–36

    Article  CAS  Google Scholar 

  • Bidigare RR, Iriarte JL, Kang SH, Karentz D, Ondrusek ME, Fryxell GA (1996) Phytoplankton: quantitative and qualitative assessments. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for ecological research West of the Antarctic Peninsula. American Geophysical Union, Washington, DC, pp 173–198

    Chapter  Google Scholar 

  • Bischof K, Hanelt D, Tug H, Karsten U, Brouwer PEM, Wiencke C (1998) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395

    Article  Google Scholar 

  • Boelen P, Veldhuis MJW, Buma AGJ (2001) Accumulation and repair of UVBR mediated DNA damage in marine tropical picoplankton subjected to mixed and simulated non-mixed conditions. Aquat Microb Ecol 24:265–274

    Article  Google Scholar 

  • Booth CR, Lucas TB, Morrow JH, Weiler CS, Penhale PA (1994) The United States National Science Foundation’s Polar Network for monitoring ultraviolet radiation. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 17–37

    Chapter  Google Scholar 

  • Bothwell ML, Sherbot DMJ, Pollock CM (1994) Ecosystem response to solar ultraviolet-B radiation: influence of trophic level interactions. Science 265:97–100

    Article  PubMed  CAS  Google Scholar 

  • Boucher NP, Prézelin PP (1996) An in situ biological weighting function for UV inhibition of phytoplankton carbon fixation in the Southern Ocean. Mar Ecol Prog Ser 144:223–236

    Article  Google Scholar 

  • Buma AGJ, Noordeloos AAM, Larsen J (1993) Strategies and kinetics of photoacclimation in three Antarctic nanophytoflagellates. J Phycol 29: 407–417

    Article  Google Scholar 

  • Buma AGJ, Zemmelink HJ, Sjollema K, Gieskes WWC (1996) UVB radiation modifies protein and photosynthetic pigment content, volume and ultrastructure of marine diatoms. Mar Ecol Prog Ser 142:47–54

    Article  CAS  Google Scholar 

  • Buma AGJ, Engelen AH, Gieskes WWC (1997) Wavelength-dependent induction of thymine dimers and growth rate reduction in the marine diatomCyclotellasp. exposed to ultraviolet radiation. Mar Ecol Prog Ser 153:91–97

    Article  CAS  Google Scholar 

  • Buma AGJ, Boer MK, Boelen P (2001) Depth distributions of DNA damage in Antarctic marine phyto-and bacterioplankton exposed to Summertime ultraviolet radiation. J Phycol 37:200–208

    Article  CAS  Google Scholar 

  • Bursa AS (1961) The annual oceanographic cycle at Igloolik in the Canadian Arctic. II. The phytoplankton. J Fish Res Board Can 18:563–615

    Article  Google Scholar 

  • Caldwell MM, Teramura AH, Tevini T (1989) The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol Evol 4:363–367

    Article  PubMed  CAS  Google Scholar 

  • Carmack EC, Swift JH (1990) Some aspects of the large-scale physical oceanography of the Arctic Ocean influencing biological distributions. In: Medlin LK, Priddle J (eds) Polar marine diatoms. British Antarctic Survey, UK, pp 35–46

    Google Scholar 

  • Carreto JI, Carigman MO, Daleo G, De Marco SG (1990) Occurrence of mycosporine-like amino acids in the red-tide dinoflagellateAlexandrium excavatum:UV-photoprotective compounds? J Plankton Res 112:909–921

    Article  Google Scholar 

  • Chipperfield MP, Jones RL (1999) Relative influences of atmospheric chemistry and transport on Arctic ozone trends. Nature 400:551–554

    Article  CAS  Google Scholar 

  • Cullen JJ, Neale PJ (1994) Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynth Res 39:303–320

    Article  CAS  Google Scholar 

  • Cullen JJ, Neale PJ (1997a) Effect of UV on short-term photosynthesis of natural phytoplankton. Photochem Photobiol 65:264–265

    Article  Google Scholar 

  • Cullen JJ, Neale PJ (1997b) Biological weighting functions for describing the effects of ultraviolet radiation on aquatic systems. In: Häder DP (ed) The effects of ozone depletion on aquatic ecosystems. Landes,Austin, Texas, pp 97–118

    Google Scholar 

  • Cullen JJ, Neale PJ, Lesser MP (1992) Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258:645–650

    Article  Google Scholar 

  • Davidson AT, Marchant HJ (1994) The impact of ultraviolet radiation onPhaeocystisand selected species of Antarctic marine diatoms. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 187–205

    Chapter  Google Scholar 

  • Döhler G (1997) Impact of UV radiation of different wavebands on pigments and assimilation of 15N-ammonium and 15N-nitrate by natural phytoplankton and ice algae in Antarctica. J Plant Physiol 151:550–555

    Article  Google Scholar 

  • Dunlap WC, Shick JM (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol 34:418–430

    Article  Google Scholar 

  • Dunlap WC, Chalker BE, Oliver JK (1986) Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. III. UV-B absorbing compounds. J Exp Mar Biol Ecol 104:239–248

    Article  Google Scholar 

  • Dunlap WC, Rae GA, Helbling EW, Villafañe VE, Holm-Hansen 0 (1995) Ultraviolet-absorbing compounds in natural assemblages of Antarctic phytoplankton. Antarct J US 30:323–326

    Google Scholar 

  • Eilertsen HC (1993) Spring blooms and stratification. Nature 363:24

    Article  Google Scholar 

  • Eilertsen EC, Taasen JP, Weslawski JM (1989) Phytoplankton studies in the fjords of West Spitsbergen: physical environment and production in spring and summer. J Plankton Res 11:1245–1260

    Article  Google Scholar 

  • Eilertsen HC, Sandberg S, Tollefsen H (1995) Photoperiodic control of diatom spore growth: a theory to explain the onset of phytoplankton blooms. Mar Ecol Prog Ser 116:303–307

    Article  Google Scholar 

  • El-Sayed SZ (1984) Productivity of the Antarctic waters - a reappraisal. In: Holm-Hansen O, Bolis L, Gilles R (eds) Marine phytoplankton and productivity. Springer, Berlin Heidelberg New York, pp 19–34

    Chapter  Google Scholar 

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207–210

    Article  CAS  Google Scholar 

  • Frederick JE, Snell HE, Haywood EK (1989) Solar ultraviolet radiation at the earth’s surface. Photochem Photobiol 50:443–450

    Article  CAS  Google Scholar 

  • Garcia-Pichel F (1994) A model for internal shelf-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717

    Article  Google Scholar 

  • Gleason JF, Bhartia PK, Herman JR, McPeters R, Newman P, Stolarski R, Flynn L, Larko D, Seftor C, Wellemeyer C, Komhyr WD, Miller AJ, Planet W (1993) Record low global ozone in 1992. Science 260:523–526

    Article  PubMed  CAS  Google Scholar 

  • Häder DP, Worrest RC, Kumar HD, Smith RC (1995) Effects of increased solar ultraviolet radiation on aquatic ecosystems. Ambio 24:174–180

    Google Scholar 

  • Hanelt D, Wiencke C, Nultsch W (1997) Influence of UV radiation on the photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol B Biol 38:40–47

    Article  CAS  Google Scholar 

  • Hegseth EN (1998) Primary production of the northern Barents Sea. Polar Res 17:113–123

    Article  Google Scholar 

  • Hegseth EN, Svendsen H, von Quillfeldt CH (1995) Phytoplankton in fjords and coastal waters of northern Norway: environmental conditions and dynamics of the spring bloom. In: Skojdal HR, Hopkins C, Erikstad K, Leinaas HP (eds) Ecology of fjords and coastal waters. Elsevier, Amsterdam, pp 45–72

    Google Scholar 

  • Helbling EW, Villafañe VE, Ferrario M, Holm-Hansen O (1992) Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Mar Ecol Prog Ser 80:89–100

    Article  Google Scholar 

  • Helbling EW, Villafañe VE, Holm-Hansen O (1994a) Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 207–227

    Chapter  Google Scholar 

  • Helbling EW, Villafañe VE, Holm-Hansen O (1994b) In situ inhibition of primary production due to ultraviolet radiation in Antarctica. Antarct J US 29:262–263

    Google Scholar 

  • Helbling EW, Villafañe VE, Holm-Hansen 0 (1995) Variability of phytoplankton distribution and primary production around Elephant island, Antarctica, during 1990–1993. Polar Biol 15:233–246

    Article  Google Scholar 

  • Helbling EW, Chalker BE, Dunlap WC, Holm-Hansen O, Villafañe VE (1996a) Photo-acclimation of Antarctic marine diatoms to solar ultraviolet radiation. J Exp Mar Biol Ecol 204:85–101

    Article  Google Scholar 

  • Helbling EW, Eilertsen HC, Villafañe VE, Holm-Hansen O (1996b) Effects of UV radiation on post-bloom phytoplankton populations in Kvalsund, North Norway. J Photochem Photobiol B Biol 33:255–259

    Article  Google Scholar 

  • Helbling EW, Buma AGJ, Boer MK de, Villafañe VE (2001) In situ impact of solar ultraviolet radiation on photosynthesis and DNA in temperate marine phytoplankton. Mar Ecol Prog Ser 211:43–49

    Article  CAS  Google Scholar 

  • Hernando M, Carreto JI, Carignan MO, Ferreyra GA, Groâ C (2001) Effects of solar radiation on growth and mycosporine-like amino acids content in an Antarctic diatom. Polar Biol 24: (in press

    Google Scholar 

  • Heywood RB, Priddle J (1987) Retention of phytoplankton by an eddy. Cont Shelf Res 7:937–955

    Article  Google Scholar 

  • Hofmann DJ (1989) Direct ozone depletion in springtime Antarctic lower stratospheric clouds. Nature 337:447–449

    Article  CAS  Google Scholar 

  • Hofmann DJ (1996) Recovery of Antarctic ozone hole. Nature 384:222–223 Holm-Hansen O (1997) Short-and long-term effects of UVA and UVB on marine phytoplankton productivity. Photochem Photobiol 65:266–267

    Google Scholar 

  • Holm-Hansen O, El-Sayed SZ, Franceschini GA, Cuhel RL (1977) Primary production and the factors controlling phytoplankton growth in the Southern ocean. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Proc 3rd SCAR Symp Antarct Biol. Smithsonian Institution, Houston, pp 11–50

    Google Scholar 

  • Holm-Hansen O, Mitchell BG, Hewes CD, Karl DM (1989) Phytoplankton blooms in the vicinity of Palmer Station, Antarctica. Polar Biol 10:49–57

    Article  Google Scholar 

  • Holm-Hansen O, Helbling EW, Lubin D (1993a) Ultraviolet radiation in Antarctica: inhibition of primary production. Photochem Photobiol 58:567–570

    Article  CAS  Google Scholar 

  • Holm-Hansen O, Lubin D, Helbling EW (1993b) Ultraviolet radiation and its effects on organisms in aquatic environments. In: Young AR, Björn LO, Moan J, Nultsch W (eds) Environmental UV photobiology. Plenum, New York, pp 379–425

    Google Scholar 

  • Horner RA (1980) Ecology and productivity of Arctic sea ice diatoms. Proc 6th Diatom Symp, pp 359–369

    Google Scholar 

  • Horner RA (1982) Do ice algae produce the Spring phytoplankton bloom in seasonally ice-covered waters? Proc 7th Diatom Symp, pp 401–409

    Google Scholar 

  • Karentz D (1994) Ultraviolet tolerance mechanisms in Antarctic marine organisms. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 93–110

    Chapter  Google Scholar 

  • Karentz D, Cleaver JE, Mitchell DL (199la) Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J Phycol 27:326–341

    Article  Google Scholar 

  • Karentz D, McEuen FS, Land MC, Dunlap WC (1991b) A survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar Biol 108:157–166

    Article  CAS  Google Scholar 

  • Karsten U, Wiencke C (1999) Factors controlling the formation of UV-absorbing mycosporine-like amino acids in the marine red algaPalmaria palmatafrom Spitsbergen (Norway). J Plant Physiol 125:407–415

    Article  Google Scholar 

  • Karsten U, Bischof K, Hanelt D, Tug H, Wiencke C (1999) The effect of ultraviolet radiation on photosynthesis and ultraviolet-absorbing substances in the endemic Arctic macroalgaDevaleraea ramentacea(Rhodophyta). Physiol Plant 105:58–66

    Article  CAS  Google Scholar 

  • Kerr JB, McElroy CT (1993) Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 262:1032–1034

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Watanabe Y (1993) The effect of long-wave ultraviolet radiation (UV-A) on the photosynthetic activity of natural population of freshwater phytoplankton. Ecol Res 8:225–234

    Article  Google Scholar 

  • Kirchhoff VWJH, Schuch NJ, Pinheiro DK, Harris JM (1996) Evidence for an ozone hole perturbation at 30° south. Atm Environ 30:1481–1488

    Article  CAS  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, 509 pp

    Book  Google Scholar 

  • Laurion I, Vincent WF (1998) Cell size versus taxonomic composition as determinants of UV-sensitivity in natural phytoplankton communities. Limnol Oceanogr 43:1774–1779

    CAS  Google Scholar 

  • Lesser MP, Cullen JJ, Neale PJ (1994) Carbon uptake in a marine diatom during acute exposure to ultraviolet B radiation: relative importance of damage and repair. J Phycol 30:183–192

    Article  CAS  Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271

    Article  Google Scholar 

  • Lubin D, Jensen EH (1995) Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends. Nature 377:710–713

    Article  CAS  Google Scholar 

  • Lubin D, Mitchell BG, Frederick JE, Alberts AD, Booth CR, Lucas T, Neuschuler D (1992) A contribution toward understanding the biospherical significance of Antarctic ozone depletion. J Geophys Res 97:7817–7828

    Article  CAS  Google Scholar 

  • Madronich S (1992) Implications of recent total atmospheric ozone measurements for biologically active ultraviolet radiation reaching the earth’s surface. Geophys Res Lett 19:37–40

    Article  CAS  Google Scholar 

  • Madronich S (1993) The atmosphere and UV-B radiation at ground level. In: Young AR, Björn LO, Moan J, Nultsch W (eds) Environmental UV photobiology. Plenum Press, New York, pp 1–39

    Google Scholar 

  • Mitchell BG, Brody EA, Holm-Hansen O, McClain CR, Bishop J (1991) Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnol Oceanogr 36:1662–1677

    Article  Google Scholar 

  • Müller R, Crutzen PJ, Gross JU, Brühl C, Russell JM III, Gernandt H, McKenna DS (1997) Severe chemical ozone loss in the Arctic during the winter of 1995–96. Nature 389:709–712

    Article  Google Scholar 

  • Neale PJ, Kieber DJ (2000) Assessing biological and chemical effects of UV in the marine environment: spectral weighting functions. In: Hester RE, Harrison RM (eds) Causes and environmental implications of increased U.V.-B. radiation. Royal Society of Chemistry, Cambridge, pp 61–83

    Chapter  Google Scholar 

  • Neale PJ, Lesser MP, Cullen JJ (1994) Effects of ultraviolet radiation on the photosynthesis of phytoplankton in the vicinity of McMurdo station, Antarctica. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 125–142

    Chapter  Google Scholar 

  • Neale PJ, Cullen JJ, Davis RF (1998a) Inhibition of marine photosynthesis by ultraviolet radiation: variable sensitivity of phytoplankton in the Weddell-Scotia Confluence during the austral spring. Limnol Oceanogr 43:433–448

    Article  CAS  Google Scholar 

  • Neale PJ, Davis RF, Cullen JJ (1998b) Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton. Nature 392:585–589

    Article  CAS  Google Scholar 

  • Neale PJ, Fritz JJ, Davis RF (2001) Effects of UV on photosynthesis of Antarctic phytoplankton: models and application to coastal and pelagic assemblages. Rev Chil Hist Nat 74:283–292

    Article  Google Scholar 

  • Orce VL, Helbling EW (1997) Latitudinal UVR-PAR measurements in Argentina: extent of the “ozone hole”. Global Plan Change 15:113–121

    Article  Google Scholar 

  • Orsi AH, Whitworth T III, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res Part I 42:641–673

    Article  Google Scholar 

  • Priddle J (1990) The Antarctic planktonic ecosystem. In: Medlin LK, Priddle J (eds) Polar marine diatoms. British Antarctic Survey, UK, pp 25–34

    Google Scholar 

  • Rex M, Harris NRP, von der Gathen P, Lehman R, Braathen GO, Reimer E, Beck A, Chipperfield MP, Alfier R, Allaart M, O’Connor F, Dier H, Dorokhov V, Fast H, Gil M, Kyro E, Litynska Z, Mikkelsen IS, Molyneux M, Nakane H, Notholt J, Rummukainen M, Viatte P, Wenger J (1997) Prolonged stratospheric ozone loss in the 1995–96 Arctic winter. Nature 389:835–838

    Article  CAS  Google Scholar 

  • Rex M, von der Gathen P, Braathen GO, Harris NRP, Reimer E, Beck A, Alfier R, KrügerCarstensen R, Chipperfield MP, De Backer H, Balis D, O’Connor F, Dier H, Dorokhov V, Fast H, Gamma A, Gil M, Kyro E, Litynska Z, Mikkelsen IS, Molyneux M, Murphy G, Reid SJ, Rummukainen M, Zerefos C (1999) Chemical ozone loss in the Arctic winter 1994/95 as determined by the match technique. J Atm Chem 32:35–59

    Article  CAS  Google Scholar 

  • Sakshaug E (1990) Arctic planktonic ecosystems In: Medlin LK, Priddle J (eds) Polar marine diatoms. British Antarctic Survey, UK, pp 47–52

    Google Scholar 

  • Sakshaug E, Holm-Hansen O (1984) Factors governing pelagic production in polar oceans. In: Holm-Hansen O, Bolis L, Gilles R (eds) Marine phytoplankton and productivity. Springer, Berlin Heidelberg New York, pp 1–18

    Chapter  Google Scholar 

  • Sakshaug E, Slagstad D (1990) Light and productivity of phytoplankton in polar marine ecosystems: a physiological view. In: Sakshaug E, Hopkins CCE, Oritsland NA (eds) Proc Pro Mare Symp Polar Mar Ecol, pp 69–85

    Google Scholar 

  • Santee ML, Read WG, Waters JW, Froidevaux L, Manney GL, Flower DA, Jarnot RF, Harwood RS, Peckham GE (1995) Interhemispheric differences in polar stratospheric HNO3H2O, ClO, and O3. Science 267:849–852

    Article  PubMed  CAS  Google Scholar 

  • Schofield O, Kroon BMA, Prézelin BB (1995) Impact of ultraviolet-B radiation on photosystem II activity and its relationship to the inhibition of carbon fixation rates for Antarctic ice algae communities. J Phycol 31:703–715

    Article  CAS  Google Scholar 

  • Shick JM, Lesser MP, Jokiel PL (1996) Effects of ultraviolet radiation on corals and other coral reef organisms. Global Change Biol 2:527–545

    Article  Google Scholar 

  • Smith RC, Cullen JJ (1995) Effects of UV radiation on phytoplankton. Rev Geophys Supp1:1211–1223

    Google Scholar 

  • Smith RC, Prézelin BB, Baker KS, Bidigare RR, Boucher NP, Coley TL, Karentz D, Maclntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959

    Article  PubMed  CAS  Google Scholar 

  • Smith WO (1991) Nutrient distributions and new production in polar regions: parallels and contrasts between the Arctic and Antarctic. Mar Chem 35:245–257

    Article  CAS  Google Scholar 

  • Smith WO, Nelson DM, Mathot S (1999) Phytoplankton growth rates in the Ross Sea, Antarctica, determined by independent methods: temporal variations. J Plankton Res 21:1519–1536

    Article  Google Scholar 

  • Squire VA (1990) Sea ice: its formation, distribution and properties. In: Medlin LK, Priddle J (eds) Polar marine diatoms. British Antarctic Survey, UK, pp 3–8

    Google Scholar 

  • Sundbäck K, Odmark S, Wulff A, Nilsson C, Wängberg SA (1997) Effects of enhanced UVB radiation on a marine benthic diatom mat. Mar Biol 128:171–179

    Article  Google Scholar 

  • Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Cons Perm Int Explor Mer 18:287–295

    Google Scholar 

  • Teramura AH, Sullivan JH (1994) Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth Res 39:463–473

    Article  CAS  Google Scholar 

  • Theriot E, Fryxell GA (1985) Multivariate statistical analysis of net diatom species distributions in the southwestern Atlantic and Indian Ocean. Polar Biol 5:23–30

    Article  Google Scholar 

  • Townsend DW, Keller MD, Sieracki ME, Ackleson SG (1992) Spring phytoplankton blooms in the absence of vertical water column stratification. Nature 360:59–62

    Article  Google Scholar 

  • Vernet M, Smith RC (1997) Effects of ultraviolet radiation on the pelagic Antarctic ecosystem. In: Häder DP (ed) The effects of ozone depletion on aquatic ecosystems. Landes, Austin, Texas, pp 247–265

    Google Scholar 

  • Vernet M, Brody EA, Holm-Hansen O, Mitchell BG (1994) The response of Antarctic phytoplankton to ultraviolet radiation: absorption, photosynthesis, and taxonomic composition. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 143–158

    Chapter  Google Scholar 

  • Villafañe VE, Helbling EW, Holm-Hansen O (1995a) Spatial and temporal variability of phytoplankton biomass and taxonomic composition around Elephant Island, Antarctica, during the summers of 1990–1993. Mar Biol 123:677–686

    Article  Google Scholar 

  • Villafañe VE, Helbling EW, Holm-Hansen O, Chalker BE (1995b) Acclimatization of Antarctic natural phytoplankton assemblages when exposed to solar ultraviolet radiation. J Plankton Res 17:2295–2306

    Article  Google Scholar 

  • Villafañe VE, Helbling EW, Holm-Hansen O, Díaz H (1995c) Long term responses by Antarctic phytoplankton to ultraviolet radiation. Antarct J US 30:320–322

    Google Scholar 

  • Villafañe VE, Andrade M, Lairana AV, Zaratti F, Helbling EW (1999) Inhibition of phytoplankton photosynthesis by solar ultraviolet radiation: studies in Lake Titicaca, Bolivia. Freshwater Biol 42:215–224

    Article  Google Scholar 

  • Vincent WF, Roy S (1993) Solar ultraviolet-B radiation and aquatic primary production: damage, protection, and recovery. Environ Rev 1:1–12

    CAS  Google Scholar 

  • Von Quillfeldt CH (1996) Ice algae and phytoplankton in north Norwegian and Arctic waters: species composition, succession and distribution. PhD Thesis, University of Tromso, Tromso, Norway

    Google Scholar 

  • Wängberg SA, Selmer JS, Gustayson K (1996) Effects of UV-B radiation on biomass and composition in marine phytoplankton communities. Sci Mar 60 (Suppl 1):81–88

    Google Scholar 

  • Weiler CS, Penhale PA (1994) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, 257 pp

    Book  Google Scholar 

  • Worrest RC, Thomson BE, Dyke H van (1981a) Impact of UV-B radiation upon estuarine microcosms. Photochem Photobiol 33:861–867

    Article  Google Scholar 

  • Worrest RC, Wolniakowski KU, Scott JD, Broker DL, Thomson BE, Dyke H van (198lb) Sensitivity of marine phytoplankton to UV-B radiation: impact upon a model ecosystem. Photochem Photobiol 33:223–227

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Helbling, E.W., Villafañe, V.E. (2002). UV Radiation Effects on Phytoplankton Primary Production: A Comparison Between Arctic and Antarctic Marine Ecosystems. In: Hessen, D.O. (eds) UV Radiation and Arctic Ecosystems. Ecological Studies, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56075-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56075-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62655-5

  • Online ISBN: 978-3-642-56075-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics