Skip to main content

Spectral Imaging of Single CdSe/ZnS Quantum Dots Employing Spectrally- and Time-resolved Confocal Microscopy

  • Chapter

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 2))

Abstract

A spectrally- and time-resolved study of single CdSe/ZnS quantum dots (QDs) is presented. To this end a versatile, high sensitivy spectrograph is coupled to a confocal laser-scanning microscope. The spectrograph is built in-house and is especially developed for use in fluorescence microscopy. The high sensitivity is achieved by using a prism for the dispersion of light in combination with a state-of-the-art back-illuminated charge-coupled device (CCD) camera. The detection efficiency of the spectrograph, including the CCD camera, amounts to 0.77 ±0.05 at 633 nm. Full emission spectra with a 1–5 nm spectral resolution can be recorded at a maximum rate of 800 spectra per second. The spectrograph can easily be fiber-coupled to any confocal laser-scanning microscope.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    Article  CAS  Google Scholar 

  2. Gaponenko SV (1998) Optical properties of semiconductor nanocrystals. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  3. Efros AlL, Rosen M (2000) The electronic structure of semiconductor nanocrystals. Annu Rev Mater Sci 30:475–521

    Article  CAS  Google Scholar 

  4. Yoffe AD (2001) Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv Phys 50:1–208

    Article  CAS  Google Scholar 

  5. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101: 9463–9475

    Article  CAS  Google Scholar 

  6. Empedocles S, Bawendi MG (1999) Spectroscopy of single CdSe nanocrystallites. Ace Chem Res 32:389–396

    Article  CAS  Google Scholar 

  7. Mikulec FV, Kuno M, Bennati M, Hall DA, Griffin RG, Bawendi MG (2000) Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. J Am Chem Soc 122:2532–2540

    Article  CAS  Google Scholar 

  8. Nanotech, special issue. (2001) Scientific American 285 (3)

    Google Scholar 

  9. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescent ZnS-capped CdSe nanocrystals. J Phys Chem 100:468–471

    Article  CAS  Google Scholar 

  10. Bruchez Jr. M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  11. Blanton SA, Dehestani A, Lin PC, Guyot-Sionnest P (1994) Photoluminescence of single semiconductor nanocrystallites by two-photon excitation microscopy. Chem Phys Lett 229:317–322

    Article  CAS  Google Scholar 

  12. Nirmal M, Dabbousi BO, Bawendi M, Macklin JJ, Trautmann JK, Harris TD, Brus LE (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383:802–804

    Article  CAS  Google Scholar 

  13. Kuno M, Fromm DP, Hamann HF, Gallagher A, Nesbitt DJ (2000) Nonexponential “blinking” kinetics of single CdSe quantum dots: a universal power law behavior. J Chem Phys 112:3117–3120

    Article  CAS  Google Scholar 

  14. Kuno M, Fromm DP, Hamann HF, Gallagher A, Nesbitt DJ (2001) “On”/”off” fluorescence intermittency of single semiconductor quantum dots. J Chem Phys 115: 1028–1040

    Article  CAS  Google Scholar 

  15. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  16. Dahan M, Laurence T, Pinaud F, Chemla DS, Alivisatos AP, Sauer M, Weiss S (2001) Time-gated biological imaging by use of colloidal quantum dots. Opt Lett 26:825–827

    Article  CAS  Google Scholar 

  17. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871

    Article  CAS  Google Scholar 

  18. Efros AlL, Rosen M (1997) Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys Rev Lett 78:1110–1113

    Article  Google Scholar 

  19. Banin U, Bruchez M, Alivisatos AP, Ha T, Weiss S, Chemla DS (1999) Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals. J Chem Phys 110:1195–1201

    Article  CAS  Google Scholar 

  20. Neuhauser RG, Shimizu KT, Woo WK, Empedocles SA, Bawendi MG (2000) Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots. Phys Rev Lett 85:3301–3304

    Article  CAS  Google Scholar 

  21. Empedocles SA, Bawendi MG (1997) Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 278:2114–2117

    Article  CAS  Google Scholar 

  22. Cordero SR, Carson PJ, Estabrook RA, Strouse GF, Buratto SK (2000) Photo-activated luminescence of CdSe quantum dot monolayers. J Phys Chem B 104:12137–12142

    Article  CAS  Google Scholar 

  23. Tsien RY, Poenie M (1986) Fluorescence ratio imaging: a new window into intracellular ionic signaling. Trends Biochem Sci 11:450–455

    Article  CAS  Google Scholar 

  24. Matyus L (1992) New trends in photobiology. J Photochem Photobiol B:Biol 12:323–337

    Article  CAS  Google Scholar 

  25. Willard DM, Carillo LL, Jung J, Van Orden A (2001) CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding essay. Nano Lett 1:469–474

    Article  CAS  Google Scholar 

  26. Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702–2713

    Article  CAS  Google Scholar 

  27. Feofanov A, Sharonov S, Valisa P, Da Silva E, Nabiev I, Manfait M (1995) A new confocal stigmatic spectrometer for micro-Raman and microfluorescence spectral imaging analysis: design and application. Rev Sci Instrum 66:3146–3158

    Article  CAS  Google Scholar 

  28. Millot J-M, Pingret L, Angiboust J-F, Bonhomme A, Pinon J-M, Manfait M (1995) Quantitative determination of free calcium in subcellular compartments, as probed by Indo-1 and confocal microspectrofluorometry. Cell Calc 17:354–366

    Article  CAS  Google Scholar 

  29. Martínez-Zaguilán R, Gurulé MW, Lynch M (1996) Simultaneous measurement of intracellular pH and Ca2+ in insulin-secreting cells by spectral imaging microscopy. Am J Physiol 270:C1438–C1446

    Google Scholar 

  30. Vereb G, Jares-Erijman E, Selvin PR, Jovin TM (1998) Temporally and spectrally resolved imaging microscopy of lanthanide chelates. Biophys J 74:2210–2222

    Article  CAS  Google Scholar 

  31. Favard C, Valisa P, Egret-Charlier M, Sharanov S, Herben C, Manfait M, Da Silva E, Vigny P (1999) A new UV-visible confocal laser scanning microspectrofluorometer designed for spectral cellular imaging. Biospectrosc 5:101–115

    Article  CAS  Google Scholar 

  32. Rigacci L, Alterini R, Bernabei PA, Ferrini PR, Agati G, Fusi F, Monici M (2000) Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues. Photochem Photobiol 71:737–742

    Article  CAS  Google Scholar 

  33. Lacoste TD, Michalet X, Pinaud F, Chemla DS, Alivisatos AP, Weiss S (2000) Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc Natl Acad Sci USA 97:9461–9466

    Article  CAS  Google Scholar 

  34. Tsurui H, Nishimura H, Hattori S, Hirose S, Okumura K, Shirai T (2000) Seven-color fluorescence imaging of tissue sample based on fourier spectroscopy and singular value decomposition. J Histochem Cytochem 48:653–662

    Article  CAS  Google Scholar 

  35. Frederix PLTM, Asselbergs MAH, Van Sark WGJHM, Van den Heuvel DJ, Hamelink W, De Beer EL, Gerritsen HC (2001) High sensitivity spectrograph for use in fluorescence microscopy. Appl Spec 55:1005–1012

    Article  CAS  Google Scholar 

  36. Frederix PLTM (2001) Spectral analysis in microscopy: A study of FRET and single quantum dot luminescence. Ph.D. Thesis, Utrecht University

    Google Scholar 

  37. Born M, Wolf E (1999) Principles of optics. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  38. Van Sark WGJHM, Frederix PLTM, Bol AA, Van den Heuvel DJ, Gerritsen HC, Meijerink A (2002) Blinking, blueing, and bleaching of single CdSe/ZnS quantum dots. Phys Chem Chem Phys (submitted)

    Google Scholar 

  39. Bol AA (2001) Luminescence of doped semiconductor quantum dots. Ph.D. Thesis, Utrecht University

    Google Scholar 

  40. Yen WM, Shionoya S (1999) Phosphor handbook. CRC Press, Boca Raton, FL

    Google Scholar 

  41. Li X-Q, Arakawa Y (1999) Optical linewidths in an individual quantum dot. Phys Rev B 60:1915–1920

    Article  CAS  Google Scholar 

  42. Van Sark WGJHM, Frederix PLTM, Van den Heuvel DJ, Gerritsen HC, Bol AA, Van Lingen JNJ, De Mello Donegá C, Meijerink A (2001) Photo-oxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. J Phys Chem B 105:8281–8284

    Article  Google Scholar 

  43. Blanton SA, Hines MA, Guyot-Sionnest P (1996) Photoluminescence wandering in single CdSe nanocrystals. Appl Phys Lett 69:3905–3907

    Article  CAS  Google Scholar 

  44. Empedocles SA, Neuhauser R, Shimizu K, Bawendi MG (1999) Photoluminescence from single semiconductor nanostructures. Adv Mater 11:1243–1256

    Article  CAS  Google Scholar 

  45. Van Sark WGJHM, Frederix PLTM, Van den Heuvel DJ, Bol AA, Van Lingen JNJ, De Mello Donegá C, Gerritsen HC, Meijerink A (2001) Time-resolved fluorescence spectroscopy study on the photo-physical behaviour of quantum dots. J Fluorescence 12:69–76

    Article  Google Scholar 

  46. Bowen Katari JE, Colvin VL, Alivisatos AP (1994) X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J Phys Chem 98:4109–4117

    Article  Google Scholar 

  47. Henglein A (1988) Mechanism of reactions on colloidal microelectrodes and size quantification effects. Top Curr Chem 143:113–180

    Article  CAS  Google Scholar 

  48. Dunstan DE, Hagfeldt A, Almgren M, Siegbahn HOG, Mukhtar E (1990) Importance of surface reactions in the photochemistry of ZnS colloids. J Phys Chem 94:6797–6804

    Article  CAS  Google Scholar 

  49. Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc 109:5649–5655

    Article  CAS  Google Scholar 

  50. Van Sark WGJHM, Frederix PLTM, Van den Heuvel DJ, Asselbergs MAH, Senf I, Gerritsen HC (2000) Fast imaging of single molecules and nanoparticles by wide-field microscopy and spectrally resolved confocal microscopy. Single Mol 1:291–298

    Article  Google Scholar 

  51. Rosenthal I (1978) Photochemical properties of rhodamine 6G in solution. Opt Comm 24:164–166

    Article  CAS  Google Scholar 

  52. Huston AL, Reimann CT (1991) Photochemical bleaching of adsorbed rhodamine 6G as a probe of binding geometries on a fused silica surface. Chem Phys 149:401–407

    Article  CAS  Google Scholar 

  53. Schmidt Th, Schütz GJ, Baumgartner W, Gruber HJ, Schindler H (1996) Imaging of single molecule diffusion. Proc Natl Acad Sci USA 93:2926–2929

    Article  Google Scholar 

  54. Chestnoy N, Harris TD, Hull R, Brus LE (1986) Luminescence and photophysics of CdS semiconductor clusters: the nature of the emitting electronic state. J Phys Chem 90:3393–3399

    Article  CAS  Google Scholar 

  55. Song L, Varma CAGO, Verhoeven JW, Tanke HJ (1996) Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophys J 70: 2959–2968

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Sark, W.G.J.H.M., Frederix, P.L.T.M., Asselbergs, M.A.H., Van den Heuvel, D.J., Meijerink, A., Gerritsen, H.C. (2002). Spectral Imaging of Single CdSe/ZnS Quantum Dots Employing Spectrally- and Time-resolved Confocal Microscopy. In: Kraayenhof, R., Visser, A.J.W.G., Gerritsen, H.C. (eds) Fluorescence Spectroscopy, Imaging and Probes. Springer Series on Fluorescence, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56067-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56067-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62732-3

  • Online ISBN: 978-3-642-56067-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics