Skip to main content

Fluorescence Lifetime Imaging Implemented with Resonant Galvanometer Scanners

  • Chapter
  • 560 Accesses

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 2))

Abstract

Fluorescence Lifetime Imaging (FLIM) typically utilises specialised image intensifiers to obtain a sequence of images at known times relative to a periodic excitation source. Either time-domain or frequency-domain gating characteristics of such devices have been used to derive fluorescence lifetime images on the nanosecond timescale. However, such devices can be problematical in terms of cost, robustness and complexity. This paper explores an alternative method of obtaining lifetime images by using continuously oscillating scanning elements at defined frequencies. Employing a frequency domain approach, sinusoidally modulated laser excitation at frequencies suitable for nanosecond timescale emission is scanned rapidly and symmetrically over a line by using such resonant scanners. By introducing a sampling frequency on the optical data stream critically related to both the excitation modulation frequency and the scanner frequency, it becomes possible to encode the lifetime-related phase delay and demodulation data as a function of position. The sampling achieves the necessary down shifting of the high frequency data in addition to imposing a continuous instrumental phase shifting function. By combining sampled data for a given pixel across repeated passes of the scanner action, formulas are derived for both the steady-state intensity and lifetime-related phase and demodulation data. The overall method is illustrated by simulations and by experiments on model systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang XF, Herman B (1996) Fluorescence imaging spectroscopy and microscopy. J Wiley, New York, pp 273–374

    Google Scholar 

  2. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer, New York

    Google Scholar 

  3. Ghiggino KP, Harris MR, Spizzirri PG (1992) Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope. Rev Sci Instrum 63(5): 2999–3002

    Article  CAS  Google Scholar 

  4. Dowling K, Dayel MJ, Lever MJ, French PMW, Hares JD, Dymoke-Bradshaw AKL (1998) Fluorescence lifetime imaging with picosecond resolution for biomedical applications. Optics Letters 23(10):810–812

    Article  CAS  Google Scholar 

  5. Lakowicz JR, Berndt KW (1991) Lifetime-selective fluorescence imaging using an rf phase-sensitive camera. Rev Sci Instrum 62(7): 1727–1734

    Article  CAS  Google Scholar 

  6. Clegg RM, Feddersen B, Gratton E, Jovin TM (1992) Time resolved imaging fluorescence microscopy. SPIE 1640:448–460

    Article  Google Scholar 

  7. Morgan CG, Mitchell AC, Murray JG (1992) In-situ fluorescence analysis using nanosecond decay time imaging. Trends Anal Chem 11(1):32–41

    Article  CAS  Google Scholar 

  8. Gadella TWJ, Jovin TM, Clegg RM (1993) Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale. Biophys Chem 48:221–239

    Article  CAS  Google Scholar 

  9. Verveer PJ, Squire A, Bastiaens PIH (2000) Global analysis of fluorescence lifetime imaging microscopy data. Biophys J 78:2127–2137

    Article  CAS  Google Scholar 

  10. Neumann M, Herten DP, Dietrich A, Wolfrum J, Sauer M (2000) Capillary array scanner for time-resolved detection and identification of fluorescently labelled DNA fragments. J Chromatography A 871:299–310

    Article  CAS  Google Scholar 

  11. Lassiter SJ, Stryjewski W, Legendre BL, Erdman R, Wahl M, Wurm J, Peterson R, Middendorf L, Soper SA (2000) Time-resolved fluorescence imaging of slab gels for lifetime base-calling in DNA sequencing applications. Anal Chem 72:5373–5382

    Article  CAS  Google Scholar 

  12. Piston DW, Sandison DR, Webb WW (1992) Time-resolved fluorescence imaging and background rejection by two-photon excitation in laser scanning microscopy. SPIE 1640:379–390

    Article  CAS  Google Scholar 

  13. Dong CY, So PTC, French T, Gratton E (1995) Fluorescence lifetime imaging by asynchronous pump-probe microscopy. Biophys J 69:2234–2242

    Article  CAS  Google Scholar 

  14. Buurman EP, Sanders R, Draaijer A, Gerritsen HC, van Veen JJF, Houpt PM, Levine YK (1992) Fluorescence lifetime imaging using a confocal laser scanning microscope. Scanning 14:155–159

    Article  Google Scholar 

  15. Vroom JM, de Grauw KJ, Gerritsen HC, Bradshaw DJ, Marsh PD, Watson GK, Birmingham JJ, Allison C (1999) Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl Env Micro 65(8):3502–3511

    CAS  Google Scholar 

  16. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. Dover, New York, p 80, formula 4.4.10

    Google Scholar 

  17. Haykin S (1983) Communication Systems. J Wiley, New York, pp 364–371

    Google Scholar 

  18. Blackman RB, Tukey JW (1959) The measurement of power spectra from the point of view of communications engineering. Dover, New York, pp 31–33

    Google Scholar 

  19. Boas ML (1983) Mathematical methods in the physical sciences. J Wiley, New York, pp 81–95

    Google Scholar 

  20. Birmingham JJ (1997) Frequency-domain lifetime imaging methods at Unilever Research. J Fluorescence 7(l):45–54

    Article  CAS  Google Scholar 

  21. Wilson T, Neil MAA, Juskaitis R (1998) Real-time three-dimensional imaging of macroscopic structures. J Microscopy 191(2):116–118

    Article  CAS  Google Scholar 

  22. Neil MAA, Squire A, Juskaitis R, Bastiaens PIH, Wilson T (2000) Wide-field optically sectioning fluorescence microscopy with laser illumination. J Microscopy 197(1): 1–4

    Article  CAS  Google Scholar 

  23. Tweed DG (1984) Resonant scanner linearization techniques. SPIE 498:161–168

    Article  Google Scholar 

  24. Harris P, Sipior J, Ram N, Carter GM, Rao G (1999) Rev Sci Instrum 70(2): 1535–1539

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birmingham, J.J. (2002). Fluorescence Lifetime Imaging Implemented with Resonant Galvanometer Scanners. In: Kraayenhof, R., Visser, A.J.W.G., Gerritsen, H.C. (eds) Fluorescence Spectroscopy, Imaging and Probes. Springer Series on Fluorescence, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56067-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56067-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62732-3

  • Online ISBN: 978-3-642-56067-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics