Skip to main content

LCMV and the Central Nervous System: Uncovering Basic Principles of CNS Physiology and Virus-Induced Disease

  • Chapter
Arenaviruses II

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 263))

Abstract

Our understanding of the normal functions of the central nervous system (CNS) and of the mechanisms underlying neuroimmunological responses have greatly benefited from the use of lymphocytic choriomeningitis virus (LCMV) infection of its natural host, the mouse. One of the strengths of the LCMV system is its flexibility: infection can result in dramatically distinct outcomes in mice depending on variables such as host age, immunological competence, host genetic background, virus dosage, virus strain and route of inoculation (reviewed in Borrow 1997; Buchmeier and Zajac 1999). Depending on how these variables are combined, the consequences of infection range from rapid onset, immune-mediated mortality to lifelong persistent infection in the absence of overt illness. While all of these outcomes can be induced in laboratory mice, mother-to-offspring transmission resulting in persistent LCMV infection predominates in the wild.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed R, Oldstone MBA (1988) Organ-specific selection of viral variants during chronic infection. J Exp Med 167:1719–1724

    Article  PubMed  CAS  Google Scholar 

  • Ahmed R, Salmi A, Butler LF, Chiller JM, Oldstone MBA (1984) Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. J Exp Med 60:521–540

    Article  Google Scholar 

  • Allan JE, Doherty PC (1985) Immune T cells can protect or induce fatal neurological disease in murine LCMV. Cellular Immunology 90:401–407

    Article  PubMed  CAS  Google Scholar 

  • Andersen IH, Marker O, Thomsen AR (1991) Breakdown of blood-brain barrier function in the murine lymphocytic choriomeningitis virus infection mediated by virus-specific CD8+ T cells. J Neuroimmunol 131: 155–163

    Article  Google Scholar 

  • Asensio VC, Campbell IL (1997) Chemokine gene expression in the brains of mice with lymphocytic choriomeningitis. J Virol 71:7832–7840

    PubMed  CAS  Google Scholar 

  • Barton LL, Peters CJ, Ksiazek TG (1995) Lymphocytic choriomeningitis virus: an unrecognized teratogenic pathogen. Emerg Inf Dis 4: 152–153

    Article  Google Scholar 

  • Bechtel RT, Haught KA, Mets MB (1997) Lymphocytic choriomeningitis virus: a new addition to the TORCH evaluation. Arch Ophthalmol 115:680–681

    Article  PubMed  CAS  Google Scholar 

  • Borrow P (1997) Mechanisms of viral clearance and persistence. J Viral Hepat 4: 16–24

    Article  PubMed  Google Scholar 

  • Brot MD, Rail GF, Oldstone MBA, Koob GF, Gold LH (1997) Cognitive deficit remains following clearance of persistent viral infection in mice. J Neurovirology 3:265–273

    Article  CAS  Google Scholar 

  • Buchmeier MJ, Zajac AJ (1999) Lymphocytic choriomeningitis virus. In: Ahmed R, Chen IC (eds) Persistent viral infections. John Wiley, Chichester, pp 575–605

    Google Scholar 

  • Campbell IL, Hobbs MV, Kemper P, Oldstone MB (1994) Cerebral expression of multiple cytokine genes in mice with LCMV. J Immunol 152:716–723

    PubMed  CAS  Google Scholar 

  • Cao W,Oldstone ME, De La Torre JC (1997) Viral persistent infection affects both transcriptional and posttranscriptional regulation of neuron-specific molecule GAP43. Virology 230:147–154

    Article  PubMed  CAS  Google Scholar 

  • Cheng-Mayer C, Levy JA (1988) Distinct biological and serological properties of human immunodeficiency viruses from the brain. Ann Neurol 23:S58–S61

    Article  PubMed  Google Scholar 

  • Cole GA, Gilden D, Monjan A, Nathanson N (1971) LCMV: pathogenesis of acute CNS disease. Federation Proceedings 30: 1831–1841

    PubMed  CAS  Google Scholar 

  • Cole GA, Nathanson N, Prendergast RA (1972) Requirement for theta-bearing cells in LCMV-induced CNS disease. Nature 238:335–338

    Article  PubMed  CAS  Google Scholar 

  • Dave VP, Cao Z, Browne C, Alarcon B, Fernandez-Miguel G, Lafille J, Hera ADL, Tonegawa S, Kappes DJ (1997) CD3 delta deficiency arrests development of the alpha-beta but not the gamma-delta cell lineage. EMBO J 16:1360–1370

    Article  PubMed  CAS  Google Scholar 

  • de la Torre JC, Mallory M, Brot M, Gold L, Koob G, Oldstone MBA, Masliah E (1996) Viral persistence in neurons alters synaptic plasticity and cognitive functions without destruction of brain cells. Virology 220:508–515

    Article  PubMed  Google Scholar 

  • de la Torre JC, Oldstone MB (1992) Selective disruption of growth hormone transcription machinery by viral infection. Proc Natl Acad Sci USA 20:9939–9943

    Article  Google Scholar 

  • Dockter J, Evans CF, Tishon A, Oldstone MBA (1996) Competitive selection in vivo by a cell for one variant over another: implications for RNA virus quasispecies in vivo. J Virol 70: 1799–1803

    PubMed  CAS  Google Scholar 

  • Enders G (1999) Congenital lymphocytic choriomeningitis virus infection: An underdiagnosed disease. Pediatr Infect Dis J 18:652–655

    Article  CAS  Google Scholar 

  • Epstein LG, Kuiken C, Blumberg BM, Hartman S, Sharer LR, Clement M, Goudsmit J (1991) HIV-1 V3 domain variation in brain and spleen of children with AIDS: tissue-specific evolution within host-determined quasispecies. Virology 180:583–590

    Article  PubMed  CAS  Google Scholar 

  • Evans CF, Borrow P, Torre JCdl, Oldstone MBA (1994) Virus-induced immunosuppression: kinetic analysis of the selection of a mutation associated with viral persistence. J Virol 68:7367–7373

    PubMed  CAS  Google Scholar 

  • Evans CF, Horwitz MS, Hobbs MV, Oldstone MBA (1996) Viral infection of transgenic mice expressing a viral protein in oligodendrocytes leads to chronic central nervous system autoimmune disease. J Exp Med 184:2371–2384

    Article  PubMed  CAS  Google Scholar 

  • Fazakerley JK, Southern P, Bloom F, Buchmeier MJ (1991) High resolution in situ hybridization to determine the cellular distribution of LCMV RNA in the tissues of persistently infected mice: relevance to arenavirus disease and mechanisms of viral persistence. J Gen Virol 72: 1611–1625

    Article  PubMed  Google Scholar 

  • Frei K, Leist TP, Meager A, Gallo P, Leppert O, Zinkernagel RM, Fontana A (1988) Production of B cell stimulatory factor-2 and interferon gamma in the central nervous system during viral meningitis and encephalitis. Evaluation in a murine model infection and in patients. J Exp Med 168:449–453

    Article  PubMed  CAS  Google Scholar 

  • Frei K, Malipiero UV, Leist TP, Zinkernagel RM, Schwab ME, Fontana A (1989) On the cellular source and function of interleukin 6 produced in the central nervous system in viral disease. Europ J Immunol 19:689–694

    Article  CAS  Google Scholar 

  • Gold LH, Brot MD, Polis I, Schroeder R, Tishon A, Torre JCdl, Oldstone MBA, Koob GF (1994) Behavioral effects of persistent LCMV infection in mice. Behav Neural Biol 62: 100–109

    Article  PubMed  CAS  Google Scholar 

  • Gopas J, Itzhaky O, Segev Y, Salzberg S, Trink E, Isakov N, Rager-Zisman B (1992) Persistent measles virus infection enhances class I MHC expression and immunogenicity of murine neuroblastoma cells. Cancer Immunol Immunother 34:313–320

    Article  PubMed  CAS  Google Scholar 

  • Gordon LB, Nolan SC, Ksander BR, Knopf PM, Harling-Berg CJ (1998) Normal CSF suppresses the in vitro development of cytotoxic T cells: role of the brain microenvironment in CNS immune regulation. J Neuroimmunol 88:77–84

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the CNS. J Neuroscience Res 28:254–260

    Article  CAS  Google Scholar 

  • Hotchin J (1962) The biology of LCMV infection: virus-induced immune disease. Cold Spring Harbor Symposium Quantitative Biology 27:479–499

    Article  CAS  Google Scholar 

  • Hotchin J, Seegal R (1977) Virus-induced behavioral alteration of mice. Science 196:671–674

    Article  PubMed  CAS  Google Scholar 

  • Irani DN (1998) The susceptibility of mice to immune-mediated neurologic disease correlates with the degree to which their lymphocytes resist the effects of brain-derived gangliosides. J Immunol 161:2746–2752

    PubMed  CAS  Google Scholar 

  • Joly E, Mucke L, Oldstone MBA (1991) Viral persistence in neurons explained by a lack of MHC class I expression. Science 253:1283–1285

    Article  PubMed  CAS  Google Scholar 

  • Joly E, Oldstone MBA (1992) Neuronal cells are deficient in loading peptides onto MHC class I molecules. Neuron

    Google Scholar 

  • Kagi D, Liedermann B, Burki K, Seller P, Odermatt B, Olsen KJ, Podack E, Zinkernagel R, Hengartner H (1994) Cytotoxicity mediated by T cells and NK cells is greatly impaired in perforin-deficient mice. Nature 369:31–37

    Article  PubMed  CAS  Google Scholar 

  • Kappes DJ, Alarcon B, Reguiero J (1995) T lymphocyte receptor deficiencies. Curr Opin Immunol 7: 441–447

    Article  PubMed  CAS  Google Scholar 

  • Kappes DJ, Lawrence DM, Vaughn MM, Dave VP, Belman AR, Rail GF (2000) Protection of CD3 delta knockout mice from lymphocytic choriomeningitis virus-induced immunopathology: implications for viral neuroinvasion. Virology 269:248–256

    Article  PubMed  CAS  Google Scholar 

  • Komatsu T, Bi Z, Reiss CS (1996) Interferon gamma-induced type I nitric oxide sythase activity inhibits viral replication in neurons. J Neuroimmunol 68:101–108

    Article  PubMed  CAS  Google Scholar 

  • Lampson LA (1990) MHC regulation in neural cells: distribution of peripheral and internal β 2 microglobulin and class I molecules in human neuroblastoma cell lines. J Immunol 144:512–520

    PubMed  CAS  Google Scholar 

  • Lillie RD, Armstrong C (1945) Pathology of lymphocytic choriomeningitis virus. Arch Pathol 40:141–152

    Google Scholar 

  • Lipkin WI, Battenberg ELF, Bloom FE, Oldstone MBA (1988) Viral infection of neurons can depress neurotransmitter mRNA levels without histologic injury. Brain Res 451:333–339

    Article  PubMed  CAS  Google Scholar 

  • Marker O, Nielsen MH, Diemer NH (1984) The permeability of the blood-brain barrier in mice suffering from fatal lymphocytic choriomeningitis virus infection. Acta Neuropathol (Berl) 63:229–239

    Article  CAS  Google Scholar 

  • Matloubian M, Somasundaram T, Kolhekar SR, Selvakumar R, Ahmed R (1990) Genetic basis of viral persistence: single amino acid change in the viral glycoprotein affects ability of lymphocytic choriomeningitis virus to persist in adult mice. J Exp Med 172:1043–1048

    Article  PubMed  CAS  Google Scholar 

  • Monjan AA, Bohl LS, Hudgens GA (1975) Neurobiology of LCM virus infection in rodents. Bull World Health Organ 52:487–492

    PubMed  CAS  Google Scholar 

  • Monjan AA, Cole GA, Nathanson N (1974) Pathogenesis of cerebellar hypoplasia produced by lymphocytic choriomeningitis virus infection of neonatal rats: protective effect of immunosuppression with anti-lymphoid serum. Infect Immun 10:499–502

    PubMed  CAS  Google Scholar 

  • Mueke L, Oldstone MBA (1992) The expression of MHC class I antigens in the brain differs markedly in acute and persistent infections with LCMV. J Neuroimmunol 36:193–198

    Article  Google Scholar 

  • Neumann H, Cavalie A, Jenne DE, Wekerle H (1995) Induction of MHC class I genes in neurons. Science 269:549–552

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Schmidt H, Cavalie A, Jenne D, Wekerle H (1997) MHC class I gene expression in single neurons of the central nervous system: differential regulation by interferon gamma and tumor necrosis factor alpha. J Exp Med 185:305–316

    Article  Google Scholar 

  • Oldstone MB, Homstoen J, Welsh RM (1977) Alterations of acetylcholine enzymes in neuroblastoma cells persistently infected with lymphocytic choriomeningitis virus. J Cell Physiol 91:459–472

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA (1987) Molecular mimicry and autoimmune disease. Cell 50:819–820

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA (1998) Molecular mimicry and immune-mediated disease. FASEB J 12:1255–1265

    PubMed  CAS  Google Scholar 

  • Oldstone MBA, Blount P, Southern PJ, Lampert PW (1986) Cytoimmunotherapy for persistent virus infection reveals a unique clearance pattern from the central nervous system. Nature 321:239–243

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA, Nerenberg M, Southern P, Price J, Lewicki H (1991) Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti self (virus) immune response. Cell 65:319–331

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA, Sinha YN, Blout P, Tishon A, Rodriguez M, von Wendel R, Lampert PW (1982) Virus-induced alterations in homeostasis: alterations in differentiated functions of infected cells in vivo. Science 218: 1125–1127

    Article  PubMed  CAS  Google Scholar 

  • Parra B, Hinton DR, Marten NW, Bergmann CC, Lin MT, Yang CS, Stohlman SA (1999) IFN-gamma is required for viral clearance from central nervous system oligodendroglia. J Immunol 162:1641–1647

    PubMed  CAS  Google Scholar 

  • Pearce BD, Po CL, Pisell TL, Miller AH (1999) Lymphocytic responses and the gradual hippocampal neuron loss following infection with lymphocytic choriomeningitis virus (LCMV). J Neuroimmunol 101:137–147

    Article  PubMed  CAS  Google Scholar 

  • Pearce BD, Steffensen SC, Paoletti AD, Henriksen SJ, Buchmeier MJ (1996) Persistent dentate granule cell hyperexcitability after neonatal infection with LCMV. J Neurosci 16:220–228

    PubMed  CAS  Google Scholar 

  • Pearce BD, Valadi NM, Po CL, Miller AH(2000) Viral infection of developing GABAergic neurons in a model of hippocampal disinhibition [In Process Citation]. Neuroreport 11:2433–2438

    Article  PubMed  CAS  Google Scholar 

  • Rall GF (1998) CNS neurons: the basis and benefits of low MHC expression. Curr Top Microbiol Immunol 232:115–134

    Article  PubMed  CAS  Google Scholar 

  • Rall GF, Mucke L, Oldstone MBA (1995) Consequences of cytotoxic T lymphocyte interaction with major histocompatibility complex-expressing neurons in vivo. J Exp Med 182:1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Rall GF, Oldstone MBA (1995) Virus-neuron-cytotoxic T lymphocyte interactions. Curr Topics Microbiol Immun 202:261–273

    Article  CAS  Google Scholar 

  • Riviere Y, Ahmed R, Southern PJ, Buchmeicr MJ, Dutko FJ, Oldstone MB (1985) The S RNA segment of lymphocytic choriomeningitis virus codes for the nucleoprotein and glycoproteins 1 and 2. J Virol 53:966–968

    PubMed  CAS  Google Scholar 

  • Rodriguez M, Buchmeier MJ, Oldstone MBA, Lampert PW (1983) Ultrastructural localization of viral antigens in the CNS of mice persistently infected with LCMV. Amer J Pathology 110:95–100

    CAS  Google Scholar 

  • Salvato M, Borrow P, Shimomaye E, Oldstone MBA (1991) Molecular basis of viral persistence: a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence. J Virol 65: 1863–1869

    PubMed  CAS  Google Scholar 

  • Salvato M, E Shimomaye, Southern P, Oldstone MBA (1988) Virus-lymphocyte interactions: IV. Molecular characterization of LCMV Armstrong (CTL+) small genomic segment and that of its variant clone 13 (CTL-). Virology 164:517–522

    Article  PubMed  CAS  Google Scholar 

  • Sandberg K, Kemper P, Stalder A, Zhang J, Hobbs MV, Whitton JL, Campbell IL (1994) Altered tissue distribution of viral replication and T cell spreading is pivotal in the protection against fatal lymphocytic choriomeningitis in mice after neutralization of IFN-alph/beta. J Immunol 153:220–231

    PubMed  CAS  Google Scholar 

  • Schwendemann G, Lohler J, Lehmann-Grube F (1983) Evidence for CTL-target cell interaction in brains of mice infected intracerebrally with LCMV. Acta Neuropathol 61: 183–195

    Article  PubMed  CAS  Google Scholar 

  • Sheinbergas MM (1975) Antibody to lymphocytic choriomeningitis virus in children with congenital hydrocephalus. Acta Virol 19:165–166

    PubMed  CAS  Google Scholar 

  • Steinhauer DA, Holland JJ (1987) Rapid evolution of RNA viruses. Annu Rev Microbiol 41:409–433

    Article  PubMed  CAS  Google Scholar 

  • Ting JP-Y, Takaguchi M, Macchi M, Frelinger JA (1987) The expression and detection of MHC class I antigens on murine neuroblastoma and ependymoblastoma lines. J Neuroimm 14:87–98

    Article  CAS  Google Scholar 

  • Tishon A, Lewicki H, Rail G, Herrath Mv, Oldstone MBA (1995) An essential role for type 1 interferon gamma in terminating persistent viral infection. Virology 212:244–250

    Article  PubMed  CAS  Google Scholar 

  • Valsamakis A, Riviere Y, Oldstone MBA (1987) Perturbation of differentiated functions in vivo during persistent viral infection. III. Decreased growth hormone mRNA. Virol 156:214–220

    Article  CAS  Google Scholar 

  • Villarete L, somasundarum T, Ahmed R (1994) Tissue-mediated selection of viral variants: correlation between glycoprotein mutation and growth in neuronal cells. J Virology 68:7490–7496

    PubMed  CAS  Google Scholar 

  • Wekerle M, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity in the CNS. TINS June:271–277

    Google Scholar 

  • Whitton JL, Oldstone MBA (1988) The recognition of virus-infected cells by cytotoxic T lymphocytes. Int Pediatrics 3:16–21

    Google Scholar 

  • Wright R, Johnson D, Neumann M, Ksiazek TG, Rollin P, Keech RV, Bonthius DJ, Hitehon P, Grouse CF, Bell WE, Bale JF (1997) Congenital LCMV syndrome: a disease that mimics congenital toxoplasmosis or cytomegalovirus infection. Pediatrics 100

    Google Scholar 

  • Wucherpfennig KW, Stominger JL (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80:695–705

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evans, C.F., Redwine, J.M., Patterson, C.E., Askovic, S., Rall, G.F. (2002). LCMV and the Central Nervous System: Uncovering Basic Principles of CNS Physiology and Virus-Induced Disease. In: Oldstone, M.B.A. (eds) Arenaviruses II. Current Topics in Microbiology and Immunology, vol 263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56055-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56055-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62724-8

  • Online ISBN: 978-3-642-56055-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics