Skip to main content

Dopamine and Gene Expression

  • Chapter
  • 262 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 154 / 1))

Abstract

When dopamine is released from dopaminergic neurons at the synapse, it quickly binds to its receptors that are located on dendrites or nerve terminals of target neurons as well as on dopaminergic neurons themselves. Interactions between dopamine and its receptors then leads rapidly (from a few hundred milliseconds to several seconds) to electrophysiological changes in those target neurons. These electrophysiological changes mediate the acute effects of dopaminergic transmission on the functioning of neural circuits and thereby on behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkins J, Carlezon WA, Chlan J, Ny HE, Nestler EJ (1999) Region-specific induction of ΔFosB by repeated administration of typical versus atypical antipsychotic drugs. Synapse 33:118–128

    Article  PubMed  CAS  Google Scholar 

  • Berretta S, Robertson HA, Graybiel AM (1993) Neurochemically specialized projection neurons of the striatum respond differentially to psychomotor stimulants. Prog Brain Res 99:201–205

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N, Duman RS, Neve RL, Nestler EJ (1998) Regulation of cocaine reward by CREB. Science 282:2272–2275

    Article  PubMed  CAS  Google Scholar 

  • Cole RL, Konradi C, Douglass J, Hyman SE (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14:813–823

    Article  PubMed  CAS  Google Scholar 

  • De Cesare D, Fimia GM, Sassone-Corsi P (1999) Signaling routes to CREM and CREB: plasticity in transcriptional activation. Trends Biochem Sci 24:281–285

    Article  PubMed  Google Scholar 

  • Deutch AY (1994) Identification of the neural systems subserving the actions of clozapine:clues from immediate-early gene expression. J Clin Psychiatry 55 Suppl B:37–42

    Google Scholar 

  • Doucet J-P, Nakabeppu Y, Bedard PJ, Hope BT, Nestler EJ, Jasmin B, Chen JS, Iadarola MJ, St-Jean M, Wigle N, Blanchet P, Grondin R, Robertson GS (1996) Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of striatal ΔFosB expression. Eur J Neurosci 8:365–381

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC (1994) Neuroanatomical targets of neuroleptic drugs as revealed by Fos immunochemistry. J Clin Psychiatry 55 Suppl B:33–36

    Google Scholar 

  • Finkbeiner S, Greenberg ME (1998) Ca2+ channel-regulated neuronal gene expression. J Neurobiol 37:171–189

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Jones SR, Fumagalli F, Wightman RM, Caron MG (1998) Reevaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Rev 26:148–153

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Keefe KA, Steiner H (1998) Dopamine-mediated gene regulation in the striatum. Adv Pharmacol 42:670–673

    Article  PubMed  CAS  Google Scholar 

  • Goldman PS, Tran VK, Goodman RH (1996) The multifunctional role of the coactivator CBP in transcriptional regulation. Rec Prog Hormone Res 52:103–119

    CAS  Google Scholar 

  • Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci USA 87:6912–6916

    Article  PubMed  CAS  Google Scholar 

  • Hiroi N, Graybiel AM (1996) Atypical and typical neuroleptic treatments induce distinct programs of transcription factor expression in the striatum. J Comp Neurol 374:70–83

    Article  PubMed  CAS  Google Scholar 

  • Hiroi N, Brown J, Ye H, Saudou F, Vaidya VA, Duman RS, Greenberg ME, Nestler EJ (1998) Essential role of the fosB gene in molecular, cellular, and behavioral actions of electroconvulsive seizures. J Neurosci 18:6952–6962

    PubMed  CAS  Google Scholar 

  • Hope B, Kosofsky B, Hyman SE, Nestler EJ (1992) Regulation of IEG expression and AP-1 binding by chronic cocaine in the rat nucleus accumbens. Proc Natl Acad Sci USA 89:5764–5768

    Article  PubMed  CAS  Google Scholar 

  • Hope BT, Nye HE, Kelz MB, Self DW, Iadarola MJ, Nakabeppu Y, Duman RS, Nestler EJ (1994) Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13:1235–1244

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE, Nestler EJ (1999) Principles of molecular biology. In: Charney DS, Nestler EJ, Bunney BS (eds) Neurobiological Foundations of Psychiatry. Oxford University Press, pp 73–85

    Google Scholar 

  • Janknecht R (1995) Regulation of the c-fos promoter. Immunobiology 193:137–142

    Article  PubMed  CAS  Google Scholar 

  • Kano T, Suzuki Y, Shibuya M, Kiuchi K, Hagiwara M (1995) Cocaine-induced CREB phosphorylation and c-Fos expression are suppressed in Parkinsonism model mice. Neuroreport 6:2197–200

    Article  PubMed  CAS  Google Scholar 

  • Kelz MB, Chen JS, Carlezon WA, Whisler K, Gilden L, Beckmann AM, Steffen C, Zhang Y-J, Marotti L, Self SW, Tkatch R, Baranauskas G, Surmeier DJ, Neve RL, Duman RS, Picciotto MR, Nestler EJ (1999) Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature 401:272–276

    Article  PubMed  CAS  Google Scholar 

  • Konradi C, Cole RL, Heckers S, Hyman SE (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J Neurosci 14:5623–5634

    PubMed  CAS  Google Scholar 

  • Kosofsky BE, Genova LM, Hyman SE (1995) Substance P phenotype defines specificity of c-fos induction by cocaine in developing rat striatum. J Comp Neurol 351:41–50

    Article  PubMed  CAS  Google Scholar 

  • Kreek MJ (1996) Cocaine, dopamine and the endogenous opioid system. J Addictive Dis 15:73–96

    Article  CAS  Google Scholar 

  • Lezcano N, Mrzijak L, Eubanks S, Levenson R, Goldman-Rakic P, Bergson C (2000) Dual signaling regulated by calcyon, a D1 dopamine receptor interacting protein. Science 287:1660–1664

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Kokkonen GC, Wang X, Neve KA, Roth GS (1998) D2 dopamine receptors stimulate mitogenesis through pertussis toxin-sensitive G proteins and Ras-involved ERK and SAP/JNK pathways in rat C6-D2L glioma cells. J Neurochem 71:980–990

    Article  PubMed  CAS  Google Scholar 

  • McGinty JF, Wang JQ (1998) Drugs of abuse and striatal gene expression. Adv Pharmacol 42:1017–1019

    Article  PubMed  CAS  Google Scholar 

  • Merchant KM, Dobie DJ, Filloux FM, Totzke M, Aravagiri M, Dorsa DM (1994) Effects of chronic haloperidol and clozapine treatment on neurotensin and c-fos mRNA in rat neostriatal subregions. J Pharmacol Exp Ther 271:460–471

    PubMed  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors:from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1995) Immediate-early genes: ten years on. Trends Neurosci 18:66–67

    Article  PubMed  CAS  Google Scholar 

  • Moratalla R, Elibol B, Vallejo M, Graybiel AM (1996) Network-level changes in expression of inducible Fos-Jun proteins in the striatum during chronic cocaine treatment and withdrawal. Neuron 17:147–156

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278:58–63

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Duman RS (1999) G proteins, In: Siegel GJ, Agranoff BW, Alberts RW, Fisher SK, Uhler MD (eds) Basic Neurochemistry, 6th ed., Lippincott-Raven Publishers, pp 401–414

    Google Scholar 

  • Nestler EJ, Greengard P (1999) Serine and threonine phosphorylation, In: Basic Neurochemistry, 6th ed., ed. by GJ Siegel, BW Agranoff, RW Alberts, SK Fisher, MD Uhler, Lippincott-Raven Publishers, pp 471–496

    Google Scholar 

  • Nguyen TV, Kosofsky BE, Birnbaum R, Cohen BM, Hyman SE (1992) Differential expression of c-fos and zif268 in rat striatum after haloperidol, clozapine, and amphetamine. Proc Natl Acad Sci USA 89:4270–4274

    Article  PubMed  CAS  Google Scholar 

  • Nye H, Hope BT, Kelz M, Iadarol, M, Nestler EJ (1995) Pharmacological studies of the regulation by cocaine of chronic Fra (Fos-related antigen) induction in the striatum and nucleus accumbens. J Pharmacol Exp Ther 275:1671–1680

    PubMed  CAS  Google Scholar 

  • O’Donovan KJ, Tourtellotte WG, Millbrandt J, Baraban JM (1999) The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci 22:167–173

    Article  PubMed  Google Scholar 

  • Robertson GS, Tetzlaff W, Bedard A, St-Jean M, Wigle N (1995) C-fos mediates antipsychotic-induced neurotensin gene expression in the rodent striatum. Neuroscience 67:325–344

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17:8491–8497

    PubMed  CAS  Google Scholar 

  • Ross J (1996) Control of messenger RNA stability in higher eukaryotes. Trends Genetics 12:171–175

    Article  CAS  Google Scholar 

  • Schwarzschild MA, Cole RL, Hyman SE (1997) Glutamate, but not dopamine, stimulates stress-activated protein kinase and AP-l-mediated transcription in striatal neurons. J Neurosci 17:3455–3466

    PubMed  CAS  Google Scholar 

  • Seeburg PH, Higuchi M, Sprengel R (1998) RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res Rev 26:217–229

    Article  PubMed  CAS  Google Scholar 

  • Seidah NG, Chretien M (1997) Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Op Biotechnol 8:602–607

    Article  CAS  Google Scholar 

  • Self DW, Genova LM, Hope BT, Barnhart WJ, Spencer JJ, Nestler EJ (1998) Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J Neurosci 18:1848–1859

    PubMed  CAS  Google Scholar 

  • Shippenberg TS, Rea W (1997) Sensitization to the behavioral effects of cocaine:modulation by dynorphin and kappa-opioid receptor agonists. Pharmacol Biochem Behav 57:449–455

    Article  PubMed  CAS  Google Scholar 

  • Sibley DR (1999) New insights into dopaminergic receptor function using antisense and genetically altered animals. Annu Rev Pharmacol Toxicol 39:313–341

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Bargas J, Hemmings HC Jr, Nairn AC, Greengard P (1995) Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14:385–397

    Article  PubMed  CAS  Google Scholar 

  • Turgeon SM, Pollack AE, Fink JS (1997) Enhanced CREB phosphorylation and changes in c-Fos and FRA expression in striatum accompany amphetamine sensitization. Brain Res 749:120–126

    Article  PubMed  CAS  Google Scholar 

  • Welsh GI, Hall DA, Warnes A, Strange PG, Proud CG (1998) Activation of microtubule-associated protein kinase (Erk) and p70 S6 kinase by D2 dopamine receptors. J Neurochem 70:2139–2146

    Article  PubMed  CAS  Google Scholar 

  • White FJ, Kalivas PW (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Dependence 51:141–153

    Article  CAS  Google Scholar 

  • Xing L, Quinn PG (1993) Involvement of 3’,5.’-cyclic adenosine monophosphate regulatory element binding protein (CREB) in both basal and hormone-mediated expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene. Mol Endocrinol 7:1484–1494

    Article  PubMed  CAS  Google Scholar 

  • Young ST, Porrino LJ, Iadarola MJ (1991) Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic D1 receptors. Proc Natl Acad Sci USA 88:1291–1295

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nestler, E.J. (2002). Dopamine and Gene Expression. In: Di Chiara, G. (eds) Dopamine in the CNS I. Handbook of Experimental Pharmacology, vol 154 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56051-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56051-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62726-2

  • Online ISBN: 978-3-642-56051-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics