Skip to main content

The Dopamine Transporter: Molecular Biology, Pharmacology and Genetics

  • Chapter
Dopamine in the CNS I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 154 / 1))

Abstract

More than 30 years ago, accumulation of dopamine by brain tissue was demonstrated after intraventricular injection of [3H]dopamine (Glowinski and Iversen 1966). The highest concentration was found in the striatum, the brain region with the highest innervation by dopaminergic neurons. From neuronal noradrenaline uptake, which had been discovered several years earlier (Axelrod et al. 1959; Hertting et al. 1961) dopamine uptake was shown to be pharmacologically different: tricyclic antidepressants such as desipramine inhibited dopamine uptake with low potency in vivo (Glowinski et al. 1966; Carlsson et al. 1966; Fuxe and Ungerstedt 1968) and in vitro (Ross and Renyi 1967; Hamberger 1967; Jonason and Rutledge 1968) and, in contrast to the uptake system in noradrenaline neurons, (+)- and (-)-noradrenaline were equipotent as inhibitors of [3H]dopamine uptake by striatal synaptosomes (Coyle and Snyder 1969). The potent inhibitors of dopamine uptake, nomifensine, mazindol and cocaine were radiolabeled and used as ligands to specifically label what was called the dopamine transporter (DAT) complex (Javitch et al. 1983; Kennedy and Hanbauer 1983; Pimoule et al. 1983; Dubocovich and Zahniser 1985). Photoaffinity probes based on dopamine uptake blocking diphenylpiperazine derivatives were shown to incorporate into a glycoprotein of approximately 60 kDa apparent molecular mass (Grigoriadis et al. 1989; Sallee et al. 1989), and molecular cloning finally established the DAT as a molecular entity distinct from other plasmalemmal neurotransmitter transporters (Giros et al. 1991; Kilty et al. 1991; Shimada et al. 1991; Usdin et al. 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amejdki-Chab N, Benmansour S, Costentin J, Bonnet J-J (1992a) Effects of several cations on the neuronal uptake of dopamine and the specific binding of [3H]GBR 12783: attempts to characterize the Na+ dependence of the neuronal transport of dopamine. J Neurochem 59:1795–1804

    Article  PubMed  CAS  Google Scholar 

  • Amejdki-Chab N, Costentin J, Bonnet J-J (1992b) Kinetic analysis of the chloride dependence of the neuronal uptake of dopamine and effect of anions on the ability of substrates to compete with the binding of the dopamine uptake inhibitor GBR 12783. J Neurochem 58:793–800

    Article  PubMed  CAS  Google Scholar 

  • Andersen PH (1987) Biochemical and pharmacological characterization of [3H]GBR 12935 binding in vitro to rat striatal membranes: labeling of the dopamine uptake complex. J Neurochem 48:1887–1896

    Article  PubMed  CAS  Google Scholar 

  • Aquilonius S-M, Bergström K, Eckernäs S-Ã¥, Hartvig P, Leenders KL, Lundquist H, Antoni G, Gee A, Rimland A, Uhlin J, LÃ¥ngström B (1987) In vivo evaluation of striatal dopamine reuptake sites using 11C-nomifensine and positron emission tomography. Acta Neurol Scand 76:283–287

    Article  PubMed  CAS  Google Scholar 

  • Augood SJ, Westmore K, McKenna PJ, Emson PC (1993) Co-expression of dopamine transporter mRNA and tyrosine hydroxylase mRNA in ventral mesencephalic neurones. Mol Brain Res 20:328–334

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J, Weil-Malherbe H, Tomchick R (1959) The physiological disposition of H3-epinephrine and its metabolite metanephrine. J Pharmacol 127:251–256

    CAS  Google Scholar 

  • Bannon MJ, Xue C-H, Shibata K, Dragovic LJ, Kapatos G (1990) Expression of a human cocaine-sensitive dopamine transporter in Xenopus laevis oocytes. J Neurochem 54:706–708

    Article  PubMed  CAS  Google Scholar 

  • Bannon MJ, Poosch MS, Xia Y, Goebel DJ, Cassin B, Kapatos G (1992) Dopamine transporter mRNA content in human substantia nigra decreases precipitously with age. Proc Natl Acad Sci USA 89:7095–7099

    Article  PubMed  CAS  Google Scholar 

  • Bannon MJ, Whitty CJ (1997) Age-related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology 48:969–977

    Article  PubMed  CAS  Google Scholar 

  • Batchelor M, Schenk JO (1998) Protein kinase A activity may kinetically upregulate the striatal transporter for dopamine. J Neurosci 18:10304–10309

    PubMed  CAS  Google Scholar 

  • Berfield JL, Wang LC, Reith MEA (1999) Which form of dopamine is the substrate for the human dopamine transporter: the cationic or the uncharged species? J Biol Chem 274:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Berger P, Janowsky A, Vocci F, Skolnick P, Schweri MM, Paul SM (1985) [3H]GBR 12935: a specific high affinity ligand for labeling the dopamine transport complex. Eur J Pharmacol 107:289–290

    Article  PubMed  CAS  Google Scholar 

  • Berger SP, Farrell K, Conant D, Kempner ES, Paul SM (1994) Radiation inactivation studies of the dopamine reuptake transporter protein. Mol Pharmacol 46:726–731

    PubMed  CAS  Google Scholar 

  • Bezard E, Gross CE, Fournier M-C, Dovero S, Bloch B, Jaber M (1999) Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp Neurol 155:268–273

    Article  PubMed  CAS  Google Scholar 

  • Blakely RD, Robinson MB, Amara SG (1988) Expression of neurotransmitter transport from rat brain mRNA in Xenopus laevis oocytes. Proc Natl Acad Sci USA 85:9846–9850

    Article  PubMed  CAS  Google Scholar 

  • Blanchard V, Raisman-Vozari R, Vyas S, Michel PP, Javoy-Agid F, Uhl G, Agid Y (1994) Differential expression of tyrosine hydroxylase and membrane dopamine transporter genes in subpopulations of dopaminergic neurons of the rat mesencephalon. Mol Brain Res 22:29–40

    Article  PubMed  CAS  Google Scholar 

  • Bonnet J-J, Protais P, Chagraoui A, Costentin J (1986) High-affinity [3H]GBR 12783 binding to a specific site associated with the neuronal dopamine uptake complex in the central nervous system. Eur J Pharmacol 126:211–222

    Article  PubMed  CAS  Google Scholar 

  • Bonnet J-J, Benmansour S, Vaugeois J-M, Costentin J (1988) Ionic requirements for the specific binding of [3H]GBR 12783 to a site associated with the dopamine uptake carrier. J Neurochem 50:759–765

    Article  PubMed  CAS  Google Scholar 

  • Bonnet J-J, Benmansour S, Costentin J, Parker EM, Cubeddu LX (1990) Thermodynamic analyses of the binding of substrates and uptake inhibitors on the neuronal carrier of dopamine labeled with [3H]GBR 12783 or [3H]mazindol. J Pharmacol Exp Ther 253:1206–1214

    PubMed  CAS  Google Scholar 

  • Bonnet J-J, Benmansour S, Amejdki-Chab N, Costentin J (1994) Effect of CH3HgCl and several transition metals on the dopamine neuronal carrier; peculiar behaviour of Zn2+. Eur J Pharmacol Mol Pharmacol Section 266:87–97

    Article  CAS  Google Scholar 

  • Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AGM, Wolters ECH, van Royen EA (1997) [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiat 62:133–140

    Article  PubMed  CAS  Google Scholar 

  • Bossé R, Fumagalli F, Jaber M, Giros B, Gainetdinov RR, Wetsel WC, Missale C, Caron MG (1997) Anterior pituitary hypoplasia and dwarfism in mice lacking the dopamine transporter. Neuron 19:127–138

    Article  PubMed  Google Scholar 

  • Bradberry CW, Roth RH (1989) Cocaine increases extracellular dopamine in rat nucleus accumbens and ventral tegmental area as shown by in vivo microdialysis. Neurosci Lett 103:97–102

    Article  PubMed  CAS  Google Scholar 

  • Brücke T, Asenbaum S, Pirker W, Djamshidian S, Wenger S, Wober CH, Müller CH, Podreka I (1997) Measurement of the dopaminergic degeneration in Parkinson’s disease with [123I]beta-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neural Transm (Suppl) 50:9–24

    Article  Google Scholar 

  • Buck KJ, Amara SG (1994) Chimeric dopamine-norepinephrine transporters delineate structural domains influencing selectivity for catecholamines and 1-methyl-4-phenylpyridinium. Proc Natl Acad Sci USA 91:12584–12588

    Article  PubMed  CAS  Google Scholar 

  • Buck KJ, Amara SG (1995) Structural domains of catecholamine transporter chimeras involved in selective inhibition by antidepressants and psychomotor stimulants. Mol Pharmacol 48:1030–1037

    PubMed  CAS  Google Scholar 

  • Butcher SP, Fairbrother IS, Kelly JS, Arbuthnott GW (1988) Amphetamine-induced dopamine release in the rat striatum: an in vivo microdialysis study. J Neurochem 50:346–355

    Article  PubMed  CAS  Google Scholar 

  • Byerley W, Coon H, Hoff M, Holik J, Waldo M, Freedman R, Caron MG, Giros B (1993b) Human dopamine transporter gene not linked to schizophrenia in multi-generational pedigrees. Human Hered 43:319–322

    Article  CAS  Google Scholar 

  • Byerley W, Hoff M, Holik J, Caron MG, Giros B (1993a) VNTR polymorphism for the human dopamine transporter gene (DAT1). Human Mol Genet 2:335

    Article  CAS  Google Scholar 

  • Calligaro DO, Eldefrawi ME (1988) High affinity stereospecific binding of [3H] cocaine in striatum and its relationship to the dopamine transporter. Membrane Biochem 7:87–106

    Article  CAS  Google Scholar 

  • Carlsson A, Fuxe K, Hamberger B, Lindqvist M (1966) Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons. Acta Physiol Scand 67:481–497

    Article  PubMed  CAS  Google Scholar 

  • Cass WA, Gerhardt GA (1994) Direct in vivo evidence that D2 dopamine receptors can modulate dopamine uptake. Neurosci Lett 176:259–263

    Article  PubMed  CAS  Google Scholar 

  • Cerruti C, Drian MJ, Kamenka JM, Privat A (1993b) Protection of BTCP of cultured dopaminergic neurons exposed to neurotoxins. Brain Res 617:138–142

    Article  PubMed  CAS  Google Scholar 

  • Cerruti C, Walther DM, Kuhar MJ, Uhl GR (1993a) Dopamine transporter mRNA expression is intense in rat midbrain neurons and modest outside midbrain. Mol Brain Res 18:181–186

    Article  PubMed  CAS  Google Scholar 

  • Chen N-H, Ding J-H, Wang Y-L, Reith MEA (1997) Modeling of the interaction of Na+ and K+ with the binding of the cocaine analogue 3b-(4-[125I]iodophenyl)tropane-2b-carboxylic acid isopropyl ester to the dopamine transporter. J Neurochem 68:1968–1981

    Article  PubMed  CAS  Google Scholar 

  • Chen N, Trowbridge CG, Justice JB Jr (1999) Cationic modulation of human dopamine transporter: dopamine uptake and inhibition of uptake. J Pharmacol Exp Ther 290:940–949

    PubMed  CAS  Google Scholar 

  • Chiba K, Trevor AJ, Castagnoli N (1985) Active uptake of MPP+, a metabolite of MPTP, by brain synaptosomes. Biochem Biophys Res Commun 128:1228–1232

    Article  PubMed  CAS  Google Scholar 

  • Ciliax BJ, Heilman C, Demchyshyn LL, Pristupa ZB, Ince E, Hersch SM, Niznik HB, Levey AI (1995) The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci 15:1714–1723

    PubMed  CAS  Google Scholar 

  • Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, Mufson EJ, Mash DC, Levey AI (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409:38–56

    Article  PubMed  CAS  Google Scholar 

  • Collins M, Neafsey EJ, Matsubara M (1996) ß-Carbolines: metabolism and neurotoxicity. Biogenic Amines 12:171–180

    CAS  Google Scholar 

  • Cook Jr EH, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL (1995) Association of attention-deficit disorder and the dopamine transporter gene. Am J Human Genet 56:993–998

    CAS  Google Scholar 

  • Cooper BR, Hester TJ, Maxwell RA (1980) Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo. J Pharmacol Exp Ther 215:127–134

    PubMed  CAS  Google Scholar 

  • Copeland BJ, Vogelsberg V, Neff NH, Hadjiconstantinou M (1996) Protein kinase C activators decrease dopamine uptake into striatal synaptosomes. J Pharmacol Exp Ther 277:1527–1532

    PubMed  CAS  Google Scholar 

  • Corera AT, Costentin J, Bonnet J-J (1996) Effect of low concentrations of K+ and CI- on the Na+-dependent neuronal uptake of [3H]dopamine. Naunyn-Schmiedeberg’s Arch Pharmacol 353:610–615

    Article  CAS  Google Scholar 

  • Counihan TJ, Penney JB Jr (1998) Regional dopamine transporter gene expression in the substantia nigra from control and Parkinson’s disease brains. J Neurol Neurosurg Psychiat 65:164–169

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Snyder SH (1969) Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas. J Pharmacol Exp Ther 170:221–231

    PubMed  CAS  Google Scholar 

  • Creese I, Iversen SD (1975) The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res 83:419–436

    Article  PubMed  CAS  Google Scholar 

  • Daniels GM, Amara SG (1999) Regulated trafficking of the human dopamine transporter. J Biol Chem 274:35794–35801

    Article  PubMed  CAS  Google Scholar 

  • Daniels J, Williams J, Asherson P, McGuffin P, Owen M (1995) No association between schizophrenia and polymorphisms within the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT) Am J Med Genet (Neuropsychiat Genet) 60:85–87

    Article  CAS  Google Scholar 

  • Dawson TM, Gehlert DR, Wamsley JK (1986) Quantitative autoradiographic localization of the dopamine transport complex in the rat brain: use of a highly selective radioligand: [3H]GBR 12935. Eur J Pharmaol 126:171–173

    Article  CAS  Google Scholar 

  • DiChiara G, Imperator A (1988) Drug abused by humans preferentially increase synaptic dopamine concentration in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  CAS  Google Scholar 

  • Donnan GA, Kaczmarczyk SJ, Paxinos G, Chilco PJ, Kalnins RM, Woodhouse DG, Mendelsohn FAO (1991) Distribution of catecholamine uptake sites in human brain as determined by quantitative [3H]mazindol autoradiography. J Comp Neurol 304:419–434

    Article  PubMed  CAS  Google Scholar 

  • Donovan DM, Vandenbergh DJ, Perry MP, Bird GS, Ingersoll R, Nanthakumar E, Uhl GR (1995) Human and mouse dopamine transporter genes: conservation of 5’-flanking sequence elements and gene structures. Mol Brain Res 30:327–335

    Article  PubMed  CAS  Google Scholar 

  • Doucette-Stamm LA, Blakely DJ, Tian J, Mockus S, Mao J (1995) Population genetic study of the human dopamine transporter gene (DAT1). Genet Epidemiol 12:303–308

    Article  PubMed  CAS  Google Scholar 

  • Drucker G, Raikoff K, Neafsey EJ, Collins MA (1990) Dopamine uptake inhibitory capacities of ß-carboline and 3,4-dihydro-ß-carboline analogs of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) oxidation products. Brain Res 509:125–133

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich ML, Zahniser NR (1985) Binding characteristics of the dopamine uptake inhibitor [3H]nomifensine to striatal membranes. Biochem Pharmacol 34:1137–1144

    Article  PubMed  CAS  Google Scholar 

  • Earles C, Schenk JO (1999) Multisubstrate mechanism for the inward transport of dopamine by the human dopamine transporter expressed in HEK cells and its inhibition by cocaine. Synapse 33:230–238

    Article  PubMed  CAS  Google Scholar 

  • Edvardsen ë, Dahl SG (1994) A putative model of the dopamine transporter. Mol Brain Res 27:265–274

    Article  PubMed  CAS  Google Scholar 

  • Eshleman AJ, Henningsen RA, Neve KA, Janowsky A (1994) Release of dopamine via the human transporter. Mol Pharmacol 45:312–316

    PubMed  CAS  Google Scholar 

  • Eshleman AJ, Neve RL, Janowsky A, Neve KA (1995) Characterization of a recombinant human dopamine transporter in multiple cell lines. J Pharmacol Exp Ther 274:276–283

    PubMed  CAS  Google Scholar 

  • Eshleman AJ, Carmolli M, Cumbay M, Martens CR, Neve KA, Janowsky A (1999) Characteristics of drug interactions with recombinant biogenic amine transporters expressed in the same cell type. J Pharmacol Exp Ther 289:877–885

    PubMed  CAS  Google Scholar 

  • Ferrer JV, Javitch JA (1998) Cocaine alters the accessibility of endogenous cysteines in putative extracellular and intracellular loops of the human dopamine transporter. Proc Natl Acad Sci USA 95:9238–9243

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC (1977) On the role of the dopaminergic nigrostriatal projection in reinforcement, learning, and memory. In: Cools AR, Lohman AHM, van den Bercken JHL (eds) Psychobiology of the striatum. North Holland Publ Co, Amsterdam p 73

    Google Scholar 

  • Fischer JF, Cho AK (1979) Chemical release of dopamine from striatal homogenates:evidence for an exchange diffusion model. J Pharmacol Exp Ther 208:203–209

    PubMed  CAS  Google Scholar 

  • Fischman AJ, Bonab AA, Babich JW, Palmer EP, Alpert NM, Elmaleh DR, Callahan RJ, Barrow SA, Graham W, Meltzer PC, Hanson RN, Madras BK (1998) Rapid detection of Parkinson’s disease by SPECT with altropane: a selective ligand for dopamine transporters. Synapse 29:128–141

    Article  PubMed  CAS  Google Scholar 

  • Fowler J, Volkow N, Wolf A, Dewey S, Schlyer D, MacGregor R, Hitzemann R, Logan J, Bendriem B, Gatley S, Christman D (1989) Mapping cocaine binding sites in human and baboon brain in vivo. Synapse 4:371–377

    Article  PubMed  CAS  Google Scholar 

  • Freed C, Revay R, Vaughan RA, Kriek E, Grant S, Uhl GR, Kuhar MJ (1995) Dopamine transporter immunoreactivity in rat brain. J Comp Neurol 359:340–349

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli F, Gainetdinov RR, Valenzano KJ, Caron MG (1998) Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. J Neurosci 18:4861–4869

    PubMed  CAS  Google Scholar 

  • Fumagalli F, Gainetdinov RR, Wang YM, Valenzano KJ, Miller GW, Caron MG (1999) Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J Neurosci 19:2424–2431

    PubMed  CAS  Google Scholar 

  • Fuxe K, Ungerstedt U (1968) Histochemical studies on the effect of (+)-amphetamine, drugs of the imipramine group and tryptamine on central catecholamine and 5-hydroxytryptamine neurons after intraventricular injection of catecholamines and 5-hydroxytryptamine. Eur J Pharmacol 4:135–144

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Fumagalli F, Jones SR, Caron MG (1997) Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter. J Neurochem 69:1322–1325

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283:397–401

    Article  PubMed  CAS  Google Scholar 

  • Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14:6084–6093

    PubMed  CAS  Google Scholar 

  • Gelernter J, Kranzler HR, Satel SL, Rao PA (1994) Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia. Neuropsychopharmacol 11:195–200

    Article  CAS  Google Scholar 

  • Gibb WR, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiat 54:388–396

    Article  PubMed  CAS  Google Scholar 

  • Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M (1997) Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol Psychiat 2:311–313

    Article  CAS  Google Scholar 

  • Giros B, El Mestikawy S, Bertrand L, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295:149–154

    Article  PubMed  CAS  Google Scholar 

  • Giros B, El Mestikawy S, Godinot N, Zheng K, Han H, Yang-Feng T, Caron MG (1992) Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 42:383–390

    PubMed  CAS  Google Scholar 

  • Giros B, Wang Y-M, Suter S, McLeskey SB, Pifl C, Caron MG (1994) Delineation of discrete domains for substrate, cocaine, and tricyclic antidepressant interactions using chimeric dopamine-norepinephrine transporters. J Biol Chem 269:15985–15988

    PubMed  CAS  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  PubMed  CAS  Google Scholar 

  • Glowinski J, Iversen L (1966) Regional studies of catecholamines in the rat brain — III:Subcellular distribution of endogenous and exogenous catecholamines in various brain regions. Biochem Pharmacol 15:977–987

    Article  PubMed  CAS  Google Scholar 

  • Glowinski J, Axelrod J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. IV. Effects of drugs on the disposition and metabolism of [3H]-norepinephrine and [3H]-dopamine. J Pharmacol Exp Ther 153:30–41

    PubMed  CAS  Google Scholar 

  • Gracz LM, Madras BK (1995) [3H]WIN 35,428 ([3H]CFT) binds to multiple charge-states of the solubilized dopamine transporter in primate striatum. J Pharmacol Exp Ther 273:1224–1234

    PubMed  CAS  Google Scholar 

  • Grigoriadis DE, Wilson AA, Lew R, Sharkey JS, Kuhar MJ (1989) Dopamine transport sites selectively labeled by a novel photoaffinity probe:125I-DEEP. J Neurosci 9:2664–2670

    PubMed  CAS  Google Scholar 

  • Gu H, Wall SC, Rudnick G (1994) Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J Biol Chem 269:7124–7130

    PubMed  CAS  Google Scholar 

  • Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI (1990) Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306

    Article  PubMed  CAS  Google Scholar 

  • Guttman M, Burkholder J, Kish SJ, Hussey D, Wilson A, DaSilva J, Houle S (1997) [11C]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson’s disease: Implications for the symptomatic threshold. Neurology 48:1578–1583

    Article  PubMed  CAS  Google Scholar 

  • Haber SN, Ryoo H, Cox C, Lu W (1995) Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 362:400–410

    Article  PubMed  CAS  Google Scholar 

  • Hamberger B (1967) Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. A histochemical study. Acta Physiol Scand Suppl 295:1–56

    Article  PubMed  CAS  Google Scholar 

  • Harrington KA, Augood SJ, Kingsbury AE, Foster OJF, Emson PC (1996) Dopamine transporter (DAT) and synaptic vesicle amine transporter (VMAT2) gene expression in the substantia nigra of control and Parkinson’s disease. Mol Brain Res 36:157–162

    Article  PubMed  CAS  Google Scholar 

  • Harris JE, Baldessarini RJ (1973) The uptake of [3H]dopamine by homogenates of rat corpus striatum: effects of cations. Life Sci 13:303–312

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE (1981) Differential effects of several dopamine uptake inhibitors and releasing agents on locomotor activity in normal and in reserpinized mice. Life Sci 28:1867–1873

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Orlansky H, Cohen G (1975) Studies on the distinction between uptake inhibition and release of [3H]dopamine in rat brain tissue slices. Biochem Pharmacol 24:847–852

    Article  PubMed  CAS  Google Scholar 

  • Herkenham K (1987) Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23:1–38

    Article  PubMed  CAS  Google Scholar 

  • Héron C, Billaud G, Costentin J, Bonnet J-J (1996) Complex ionic control of [3H]GBR 12783 binding to the dopamine neuronal carrier. Eur J Pharmacol 301:195–202

    Article  PubMed  Google Scholar 

  • Hersch SM, Yi H, Heilman CJ, Edwards RH, Levey AI (1997) Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J Comp Neurol 388:211–227

    Article  PubMed  CAS  Google Scholar 

  • Hertting G, Axelrod J, Kopin IJ, Whitby LG (1961) Lack of uptake of catecholamines after chronic denervation of sympathetic nerves. Nature 189:66

    Article  PubMed  CAS  Google Scholar 

  • Higuchi S, Muramatsu T, Arai H, Hayashida M, Sasaki H, Trojanowski JQ (1995) Polymorphisms of dopamine receptor and transporter genes and Parkinson’s disease. J Neural Transm P-D Sect 10:107–113

    Article  CAS  Google Scholar 

  • Hoffman BJ, Hansson SR, Mezey E, Palkovits M (1998) Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Frontiers Neuroendocrinol 19:187–231

    Article  CAS  Google Scholar 

  • Holz RW, Coyle JT (1974) The effects of various salts, temperature, and the alkaloids veratridine and batrachotoxin on the uptake of [3H]dopamine into synaptosomes from rat striatum. Mol Pharmacol 10:746–758

    CAS  Google Scholar 

  • Horn AS (1973) Structure-activity relations for the inhibition of catecholamine uptake into synaptosomes from noradrenaline and dopaminergic neurons in rat brain homogenates. Br J Pharmacol 47:332–338

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O, Pifl C (1994) The validity of the MPTP primate model for the neuro-chemical pathology of idiopathic Parkinson’s disease. In: Briley M, Marien M (eds) Noradrenergic mechanisms in Parkinson’s disease. CRC Press, Boca Raton Ann Arbor London Tokyo

    Google Scholar 

  • Huang C-L, Chen H-C, Huang N-K, Yang D-M, Kao L-S, Chen J-C, Lai H-L, Chern Y (1999) Modulation of dopamine transporter activity by nicotinic acetylcholine receptors and membrane depolarization in rat pheochromocytoma PC12 cells. J Neurochem 72:2437–2444

    Article  PubMed  CAS  Google Scholar 

  • Huff RA, Vaughan RA, Kuhar MJ, Uhl GR (1997) Phorbol esters increase dopamine transporter phosphorylation and decrease transport Vmax. J Neurochem 68:225–232

    Article  PubMed  CAS  Google Scholar 

  • Hurd YL, Ungerstedt U (1989) Ca2+-dependence of the amphetamine, nomifensine, and Lu 19–005 effect on in vivo dopamine transmission. Eur J Pharmacol 166:261–269

    Article  PubMed  CAS  Google Scholar 

  • Hurd YL, Pristupa ZB, Herman MM, Niznik HB, Kleinman JE (1994) The dopamine transporter and dopamine D2 receptor messenger RNAs are differentially expressed in limbic- and motor-related subpopulations of human mesencephalic neurons. Neuroscience 63:357–362

    Article  PubMed  CAS  Google Scholar 

  • Inada T, Sugita T, Dobashi I, Inagaki A, Kitao Y, Matsuda G, Kato S, Takano T, Yagi G, Asai M (1996) Dopamine transporter gene polymorphism and psychiatric symptoms seen in schizophrenic patients at their first episode. Am J Med Genet (Neuropsychiat Genet) 67:406–408

    Article  CAS  Google Scholar 

  • Innis R, Baldwin R, Sybirska E, Zea Y, Layrelle M, Al-Tikriti M, Charney D, Zoghbi S, Smith E, Wisniewksi G, Hoffer P, Wang S, Milius R, Neumeyer J (1991) Single photon emission computed tomography imaging of monoamine reuptake sites in primate brain with [123I]CIT. Eur J Pharmacol 200:369–370

    Article  PubMed  CAS  Google Scholar 

  • Iversen LL (1970) Inhibition of catecholamine uptake by 6-hydroxydopamine in rat brain. Eur J Pharmacol 10:408–410

    Article  PubMed  CAS  Google Scholar 

  • Izenwasser S, Jacocks HM, Rosenberger JG, Cox BM (1991) Nicotine indirectly inhibits [3H]dopamine uptake at concentrations that do not directly promote [3H]dopamine release in rat striatum. J Neurochem 56:603–610

    Article  PubMed  CAS  Google Scholar 

  • Izenwasser S, Terry P, Heller B, Witkin JM, Katz JL (1994) Differential relationships among dopamine transporter affinities and stimulant potencies of various uptake inhibitors. Eur J Pharmaol 263:277–283

    Article  CAS  Google Scholar 

  • Janowsky A, Schwer MM, Berger P, Long R, Skolnick P, Paul SM (1985) The effects of surgical and chemical lesions on striatal [3H]threo(+)-methylphenidate binding: correlation with [3H]dopamine uptake. Eur J Pharmacol 108:187–191

    Article  PubMed  CAS  Google Scholar 

  • Janowsky A, Berger P, Vocci F, Labarca R, Skolnick P, Paul SM (1986) Characterization of sodium-dependent [3H]GBR-12935 binding in brain: a radioligand for selective labelling of the dopamine transport complex. J Neurochem 46:1272–1276

    Article  PubMed  CAS  Google Scholar 

  • Javitch JA, Blaustein RO, Snyder SH (1983) [3H]Mazindol binding associated with neuronal dopamine uptake sites in corpus striatum membranes. Eur J Pharmacol 90:461–462

    Article  PubMed  CAS  Google Scholar 

  • Javitch JA, Blaustein RO, Snyder SH (1984) [3H]Mazindol binding associated with neuronal dopamine and norepinephrine uptake sites. Mol Pharmacol 26:35–44

    PubMed  CAS  Google Scholar 

  • Javitch JA, D’Amato RJ, Strittmater SM, Snyder SH (1985a) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82:2173–2177

    Article  PubMed  CAS  Google Scholar 

  • Javitch JA, Strittmatter SM, Snyder SH (1985b) Differential visualization of dopamine and norepinephrine uptake sites in rat brain using [3H]mazindol autoradiography. J Neurosci 5:1513–1521

    PubMed  CAS  Google Scholar 

  • Jayanthi LD, Apparsundaram S, Malone MD, Ward E, Miller DM, Eppler M, Blakely RD (1998) The Caenorhabditis elegans gene T23G5.5 encodes an antidepressantand cocaine-sensitive dopamine transporter. Mol Pharmacol 54:601–609

    PubMed  CAS  Google Scholar 

  • Jonason J, Rutledge CO (1968) The effect of protriptyline on the metabolism of dopamine and noradrenaline in rabbit brain in vitro. Acta Physiol Scand 73:161–175

    Article  PubMed  CAS  Google Scholar 

  • Jones SR, Garris PA, Wightman RM (1995) Different effects of cocaine and nomifensine on dopamine uptake in the caudate-putamen and nucleus accumbens. J Pharmacol Exp Ther 274:396–403

    PubMed  CAS  Google Scholar 

  • Jones SR, O’Dell SJ, Marshall JF, Wightman RM (1996) Functional and anatomical evidence for different dopamine dynamics in the core and shell of the nucleus accumbens in slices of rat brain. Synapse 23:224–231

    Article  PubMed  CAS  Google Scholar 

  • Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG (1998a) Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA 95:4029–4034

    Article  PubMed  CAS  Google Scholar 

  • Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998b) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 18:1979–1986

    PubMed  CAS  Google Scholar 

  • Kadowaki K, Hirota K, Koike K, Ohmichi M, Kiyama H, Miyake A, Tonizawa O (1990) Adenosine 3’,5’-cyclic monophosphate enhances dopamine accumulation in rat hypothalamic cell culture containing dopaminergic neurons. Neuroendocrinol 52:256–261

    Article  CAS  Google Scholar 

  • Kawarai T, Kawakami H, Yamamura Y, Nakamura S (1997) Structure and organization of the gene encoding human dopamine transporter. Gene 195:11–18

    Article  PubMed  CAS  Google Scholar 

  • Kelsoe JR, Sadovnick AD, Kristbjarnarson H, Bergesch P, Mroczkowski-Parker Z, Drennan M, Rapaport MH, Flodman P, Spence MA, Remick RA (1996) Possible locus for bipolar disorder near the dopamine transporter on chromosome 5. Am J Med Genet 67:533–540

    Article  PubMed  CAS  Google Scholar 

  • Kennedy LT, Hanbauer I (1983) Sodium-sensitive cocaine binding to rat striatal membrane: possible relationship to dopamine uptake sites. J Neurochem 41:172–178

    Article  PubMed  CAS  Google Scholar 

  • Kilbourn MR (1988) In vivo binding of [18F]GBR 13119 to the brain dopamine uptake system. Life Sci 42:1347–1353

    Article  PubMed  CAS  Google Scholar 

  • Kilty JE, Lorang D, Amara SG (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254:578–580

    Article  PubMed  CAS  Google Scholar 

  • King N, Bassett AS, Honer WG, Masellis M, Kennedy JL (1997) Absence of linkage for schizophrenia on the short arm of chromosome 5 in multiplex Canadian families. Am J Med Genet (Neuropsychiat Genet) 74:472–474

    Article  CAS  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiological and clinical implications. N Engl J Med 318:876–880

    Article  PubMed  CAS  Google Scholar 

  • Kitayama S, Shimada S, Uhl GR (1992b) Parkinsonism-inducing neurotoxin MPP+: uptake and toxicity in nonneuronal COS cells expressing dopamine transporter cDNA. Ann Neurol 32:109–111

    Article  PubMed  CAS  Google Scholar 

  • Kitayama S, Shimada S, Xu H, Markham L, Donovan DM, Uhl GR (1992a) Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc Natl Acad Sci USA 89:7782–7785

    Article  PubMed  CAS  Google Scholar 

  • Kitayama S, Wang J-B, Uhl GR (1993) Dopamine transporter mutants selectively enhance MPP+ transport. Synapse 15:58–62

    Article  PubMed  CAS  Google Scholar 

  • Kitayama S, Dohi T, Uhl GR (1994) Phorbol esters alter functions of the expressed dopamine transporter. Eur J Pharmacol Mol Pharmacol Section 268:115–119

    Article  CAS  Google Scholar 

  • Krueger BK (1990) Kinetics and block of dopamine uptake in synaptosomes from rat caudate nucleus. J Neurochem 55:260–267

    Article  PubMed  CAS  Google Scholar 

  • Kuhar MJ, Zarbin MA (1978) Synaptosomal transport: a chloride dependence for choline GABA, glycine and several other compounds. J Neurochem 31:251–256

    Article  PubMed  CAS  Google Scholar 

  • Laine TPJ, Ahonen A, Torniainen P, Heikkilä J, Pyhtinen J, Rasanen P, Niemelä O, Hillbom M (1999) Dopamine transporters increase in human brain after alcohol withdrawal. Mol Psychiat 4:189–191

    Article  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Irwin I (1986) MPTP: current concepts and controversies. Clin Neuropharmacol 9:485–507

    Article  PubMed  CAS  Google Scholar 

  • Le Couteur DG, Leighton PW, McCann SJ, Pond SM (1997) Association of a polymorphism in the dopamine-transporter gene with Parkinson’s disease. Movement Disorders 12:760–763

    Article  PubMed  Google Scholar 

  • Lee FJS, Pristupa ZB, Ciliax BJ, Levey AI, Niznik HB (1996) The dopamine transporter carboxyl-terminal tail. Truncation/substitution mutants selectively confer high affinity dopamine uptake while attenuating recognition of the ligand binding domain. J Biol Chem 271:20885–20894

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Kang SS, Son H, Lee YS (1998) The region of dopamine transporter encompassing the 3rd transmembrane domain is crucial for function. Biochem Biophys Res Commun 246:347–352

    Article  PubMed  CAS  Google Scholar 

  • Leighton PW, Le Couteur DG, Pang CCP, McCann SJ, Chan D, Law LK, Kay R, Pond SM, Woo J (1997) The dopamine transporter gene and Parkinson’s disease in a Chinese population. Neurology 49:1577–1579

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Balling U, Gross J, Strauss K, Wolozin BL, Murphy DL, Riederer P (1994) Organization of the human serotonin transporter gene. J Neural Transm 95:157–162

    Article  CAS  Google Scholar 

  • Lew R, Patel A, Vaughan RA, Wilson A, Kuhar MJ (1992) Microheterogeneity of dopamine transporters in rat striatum and nucleus accumbens. Brain Res 584:266–271

    Article  PubMed  CAS  Google Scholar 

  • Liang NY, Rutledge CO (1982) Evidence for carrier-mediated efflux of dopamine from corpus striatum. Biochem Pharmacol 31:2479–2484

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Wang W, Kopajtic T, Revay RS, Uhl GR (1999) Dopamine transporter: transmembrane phenylalanine mutations can selectively influence dopamine uptake and cocaine analog recognition. Mol Pharmacol 56:434–447

    PubMed  CAS  Google Scholar 

  • Lindvall O, Björklund A (1983) Dopamine- and norepinephrine-containing neuron systems: Their anatomy in the rat brain. In: Emson PC (ed) Chemical Neuroanatomy. Raven Press, New York, p 229

    Google Scholar 

  • Lorang D, Amara SG, Simerly RB (1994) Cell-type-specific expression of catecholamine transporters in the rat brain. J Neurosci 14:4903–4914

    PubMed  CAS  Google Scholar 

  • Ma SY, Ciliax BJ, Stebbins G, Jaffar S, Joyce JN, Cochran EJ, Kordower JH, Mash DC, Levey Al, Mufson EJ (1999) Dopamine transporter-immunoreactive neurons decrease with age in the human substantia nigra. J Comp Neurol 409:25–37

    Article  PubMed  CAS  Google Scholar 

  • Madras BK, Spealman RD, Fahey MA, Neumeyer JL, Saha JK, Milius RA (1989) Cocaine receptors labeled by [3H]2ß-carbomethoxy-3ß-(4-fluorophenyl) tropane. Mol Pharmacol 36:518–524

    PubMed  CAS  Google Scholar 

  • Madras BK, Gracz LM, Fahey MA, Elmaleh D, Meltzer PC, Liang AY, Stopa EG, Babich J, Fischman AJ (1998b) Altropane, a SPECT or PET imaging probe for dopamine neurons: III. Human dopamine transporter in postmortem normal and Parkinson’s diseased brain. Synapse 29:116–127

    Article  PubMed  CAS  Google Scholar 

  • Madras BK, Meltzer PC, Liang AY, Elmaleh DR, Babich J, Fischman AJ (1998a) Altropane, a SPECT or PET imaging probe for dopamine neurons: I. Dopamine transporter binding in primate brain. Synapse 29:93–104

    Article  PubMed  CAS  Google Scholar 

  • Maier W, Minges J, Eckstein N, Brodski C, Albus M, Lerer B, Hallmayer J, Fimmers R, Ackenheil M, Ebstein RE, Borrmann M, Lichtermann D, Wildenauer DB (1996) Genetic relationship between dopamine transporter gene and schizophrenia: linkage and association. Schizophrenia Res 20:175–180

    Article  CAS  Google Scholar 

  • Malison RT, McDougle CJ, van Dyck CH, Scahill L, Baldwin RM, Seibyl JP, Price LH, Leckman JF, Innis RB (1995) [123I]beta-CIT SPECT imaging of striatal dopamine transporter binding in Tourette’s disorder. Am J Psychiat 152:1359–1361

    PubMed  CAS  Google Scholar 

  • Marek GJ, Vosmer G, Seiden LS (1990) Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons. Brain Res 513:274–279

    Article  PubMed  CAS  Google Scholar 

  • Marshall JF, Navarrete RJ (1990) Contrasting tissue factors predict heterogeneous striatal dopamine neurotoxicity after MPTP or methamphetamine treatment. Brain Res 534:348–351

    Article  PubMed  CAS  Google Scholar 

  • Marshall JF, O’Dell SJ, Navarrete R, Rosenstein AJ (1990) Dopamine high-affinity transport site topography in rat brain: major differences between dorsal and ventral striatum. Neuroscience 37:11–21

    Article  PubMed  CAS  Google Scholar 

  • Martres MP, Demeneix B, Hanoun H, Hamon M, Giros B (1998) Up- and down-expression of the dopamine transporter by plasmid DNA transfer in the rat brain. Eur J Neurosci 10:3607–3616

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Gonda T, Sawada H, Uezono T, Kobayashi Y, Kawamura T, Ohtaki K, Kimura K, Akaike A (1998) Endogenously occurring ß-carboline induces parkinsonism in nonprimate animals: a possible causative protoxin in idiopathic Parkinson’s disease. J Neurochem 70:727–735

    Article  PubMed  CAS  Google Scholar 

  • McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 18:8417–8422

    PubMed  CAS  Google Scholar 

  • McElvain JS, Schenk JO (1992) A multisubstrate mechanism of striatal dopamine uptake and its inhibition by cocaine. Biochem Pharmacol 43:2189–2199

    Article  PubMed  CAS  Google Scholar 

  • McKearney JW (1982) Effects of dopamine uptake inhibitors on schedule-controlled behavior in the squirrel monkey. Psychopharmacol 78:377–379

    Article  CAS  Google Scholar 

  • McNaught KStP, Thull U, Carrupt P-A, Altomare C, Cellamare S, Carotti A, Testa B, Jenner P, Marsden CD (1996) Toxicity of PC12 cells of isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurosci Lett 206:37–40

    Article  PubMed  CAS  Google Scholar 

  • Meiergerd SM, Patterson TA, Schenk JO (1993) D2 receptors may modulate the function of the striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo. J Neurochem 61:764–767

    Article  PubMed  CAS  Google Scholar 

  • Meiergerd SM, Schenk JO (1994a) Striatal transporter for dopamine: catechol structure-activity studies and susceptibility to chemical modification. J Neurochem 62:998–1008

    Article  PubMed  CAS  Google Scholar 

  • Meiergerd SM, Schenk JO (1994b) Kinetic evaluation of the commonality between the site(s) of action of cocaine and some other structurally similar and dissimilar inhibitors of the striatal transporter for dopamine. J Neurochem 63:1683–1692

    Article  PubMed  CAS  Google Scholar 

  • Meister B, Elde R (1993) Dopamine transporter mRNA in neurons of the rat hypothalamus. Neuroendocrinol 58:388–395

    Article  CAS  Google Scholar 

  • Melikian HE, Buckley KM (1999) Membrane trafficking regulates the activity of the human dopamine transporter. J Neurosci 19:7699–7710

    PubMed  CAS  Google Scholar 

  • Mercier G, Turpin JC, Lucotte G (1999) Variable number tandem repeat dopamine transporter gene polymorphism and Parkinson’s disease: no association found. J Neurol 246:45–47

    Article  PubMed  CAS  Google Scholar 

  • Miller GW, Staley JK, Heilman CJ, Perez JT, Mash DC, Rye DB, Levey AI (1997) Immunochemical analysis of dopamine transporter protein in Parkinson’s disease. Ann Neurol 41:530–539

    Article  PubMed  CAS  Google Scholar 

  • Milner HE, Béliveau R, Jarvis SM (1994) The in situ size of the dopamine transporter is a tetramer as estimated by radiation inactivation. Biochim Biophys Acta 1190:185–187

    Article  PubMed  CAS  Google Scholar 

  • Missale C, Castelletti L, Govoni S, Spano PF, Trabucchi M, Hanbauer I (1985) Dopamine uptake is differentially regulated in rat striatum and nucleus accumbens. J Neurochem 45:51–56

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhata C, Kitayama S, Morita K, Vandenbergh D, Uhl GR, Dohi T (1998) Tyrosine-533 of rat dopamine transporter: involvement in interactions with 1-methyl-4-phenylpyridinium and cocaine. Mol Brain Res 56:84–88

    Article  PubMed  CAS  Google Scholar 

  • Moore KE (1978) Amphetamines: biochemical and behavioral actions in animals. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of Psychopharmacology. Plenum, New York, p 41

    Google Scholar 

  • Muramatsu T, Higuchi S (1995) Dopamine transporter gene polymorphism and alcoholism. Biochem Biophys Res Comm 211:28–32

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T (1997) Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci Res 29:99–111

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, Yoshida M (1988) An endogenous substance of the brain, tetrahydroisoquinoline, produces parkinsonism in primates with decreased dopamine, tyrosine hydroxylase and biopterin in the nigrostriatal regions. Neurosi Lett 87:178–182

    Article  CAS  Google Scholar 

  • Nelson N (1998) The family of Na+/Cl- neurotransmitter transporters. J Neurochem 71:1785–1803

    Article  PubMed  CAS  Google Scholar 

  • Nelson H, Mandiyan S, Nelson N (1990) Cloning of the human brain GABA transporter. FEBS Lett 269:181–184

    Article  PubMed  CAS  Google Scholar 

  • Ng JP, Menacherry SD, Liem BJ, Anderson D, Singer M, Justice Jr JB (1992) Anomalous effect of mazindol on dopamine uptake as measured by in vivo voltammetry and microdialysis. Neurosci Lett 134:229–232

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1996) The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 16:436–447

    PubMed  CAS  Google Scholar 

  • Nirenberg MJ, Chan J, Pohorille A, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1997b) The dopamine transporter: comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens. J Neurosci 17:6899–6907

    PubMed  CAS  Google Scholar 

  • Nirenberg MJ, Chan J, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1997a) Immunogold localization of the dopamine transporter: an ultrastructural study of the rat ventral tegmental area. J Neurosci 17:5255–5262

    PubMed  CAS  Google Scholar 

  • Niznik HB, Tyndale RF, Sallee FR, Gonzalez FJ, Hardwick JP, Inaba T, Kalow W (1990) The dopamine transporter and cytochrome P450IID1 (debrisoquine 4-hydroxylase) in brain: resolution and identification of two distinct [3H]GBR-12935 binding proteins. Arch Biochem Biophys 276:424–432

    Article  PubMed  CAS  Google Scholar 

  • Norregaard L, Frederiksen D, Nielsen Eë, Gether U (1998) Delineation of an endogenous zinc-binding site in the human dopamine transporter. EMBO J 17:4266–4273

    Article  PubMed  CAS  Google Scholar 

  • O’Dell SJ, Marshall JF (1988) Transport of [3H]mazindol binding sites in mesostriatal dopamine axons. Brain Res. 460:402–06

    Article  PubMed  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354

    Article  PubMed  CAS  Google Scholar 

  • Parker EM, Cubeddu LX (1988) Comparative effects of amphetamine, phenylethylamine and related drugs on dopamine efflux, dopamine uptake and mazindol binding. J Pharmacol Exp Ther 245:199–210

    PubMed  CAS  Google Scholar 

  • Parsons LH, Schad CA, Justice Jr JB (1993) Co-administration of the D2 antagonist pimozide inhibits up-regulation of dopamine release and uptake induced by repeated cocaine. J Neurochem 60:376–379

    Article  PubMed  CAS  Google Scholar 

  • Persico AM, Vandenbergh DJ, Smith SS, Uhl GR (1993) Dopamine transporter gene polymorphisms are not associated with polysubstance abuse. Biol Psychiat 34:265–267

    Article  PubMed  CAS  Google Scholar 

  • Persico AM, Wang ZW, Black DW, Andreasen NC, Uhl GR, Crowe RR (1995) Exclusion of close linkage of the dopamine transporter gene with schizophrenia spectrum disorders. Am J Psychiat 152:134–136

    PubMed  CAS  Google Scholar 

  • Petrali EH, Boulton AA, Dyck LE (1979) Uptake of para-tyramine and meta-tyramine into slices of the caudate nucleus and hypothalamus of the rat. Neurochem Res 4:633–642

    Article  PubMed  CAS  Google Scholar 

  • Pifl Ch, Schingnitz G, Hornykiewicz O (1991) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydrpyridine on the regional distribution of brain monoamines in the rhesus monkey. Neurosience 44:591–605

    Article  CAS  Google Scholar 

  • Pifl C, Giros B, Caron MG (1993) Dopamine transporter expression confers cytotoxicity to low doses of the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium. J Neurosci 13:4246–4253

    PubMed  CAS  Google Scholar 

  • Pifl Ch, Drobny H, Reither H, Hornykiewicz O, Singer EA (1995) Mechanism of the dopamine-releasing actions of amphetamine and cocaine: plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol Pharmacol 47:368–373

    PubMed  CAS  Google Scholar 

  • Pifl Ch, Hornykiewicz O, Giros B, Caron MG (1996) Catecholamine transporters and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity: studies comparing the cloned human noradrenaline and human dopamine transporter. J Pharmacol Exp Ther 277:1437–1443

    PubMed  CAS  Google Scholar 

  • Pifl Ch, Agneter E, Drobny H, Reither H, Singer EA (1997) Induction by low Na+ and Cl- of cocaine sensitive carrier-mediated efflux of amines from cells transfected with the cloned human catecholamine transporters. Brit J Pharmacol 121:205–212

    Article  CAS  Google Scholar 

  • Pifl C, Singer EA (1999) Ion-dependence of carrier-mediated release in dopamine- or norepinephrine-transporter transfected cells questions the hypothesis of facilitated exchange diffusion. Mol Pharmacol 56:1047–1054

    PubMed  CAS  Google Scholar 

  • Pilotte NS (1997) Neurochemistry of cocaine withdrawal. Curr Opin Neurol 10:534–538

    Article  PubMed  CAS  Google Scholar 

  • Pimoule C, Schoemaker H, Javoy-Agid F, Scatton B, Agid Y, Langer SZ (1983) Decrease in [3H]cocaine binding to the dopamine transporter in Parkinson’s disease. Eur J Pharmacol 95:145–146

    Article  PubMed  CAS  Google Scholar 

  • Planté-Bordeneuve V, Taussig D, Thomas F, Said G, Wood NW, Marsden CD, Harding AE (1997) Evaluation of four candidate genes encoding proteins of the dopamine pathway in familial and sporadic Parkinson’s disease: Evidence for association of a DRD2 allele. Neurology 48:1589–1593

    Article  PubMed  Google Scholar 

  • Pontieri FE, Tanda G, DiChiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the &quote;shell&quote; as compared with the &quote;core&quote; of the rat nucleus accumbens. Proc Natl Acad Sci USA 92:12304–12308

    Article  PubMed  CAS  Google Scholar 

  • Pörzgen P, Bönisch H, Brüss M (1995) Molecular cloning and organization of the coding region of the human norepinephrine transporter gene. Biochem Biophys Res Comm 215:1145–1150

    Article  PubMed  Google Scholar 

  • Povlock SL, Schenk JO (1997) A multisubstrate kinetic mechanism of dopamine transport in the nucleus accumbens and its inhibition by cocaine. J Neurochem 69:1093–1105

    Article  PubMed  CAS  Google Scholar 

  • Pristupa ZB, Wilson JM, Hoffman BJ, Kish SJ, Niznik HB (1994) Pharmacological heterogeneity of the cloned and native human dopamine transporter: disassociation of [3H]WIN 35,428 and [3H]GBR 12,935 binding. Mol Pharmacol 45:125–135

    PubMed  CAS  Google Scholar 

  • Pristuba ZB, McConkey F, Liu F, Man HY, Lee FJS, Wang YT, Niznik HB (1998) Protein kinase-mediated bidirectional trafficking and functional regulation of the human dopamine transporter. Synapse 30:79–87

    Article  Google Scholar 

  • Raiteri M, Cerrito F, Cervoni AM, del Carmine R, Ribera MT, Levi G (1978) Studies on dopamine uptake and release in synaptosomes. Adv Biochem Psychopharmacol 19:35–56

    PubMed  CAS  Google Scholar 

  • Raiteri M, Cerrito F, Cervoni AM, Levi G (1979) Dopamine can be released by two mechanisms differentially affected by the dopamine transport inhibitor nomifensine. J Pharmacol Exp Ther 208:195–202

    PubMed  CAS  Google Scholar 

  • Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD (1993) Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA 90:2542–2546

    Article  PubMed  CAS  Google Scholar 

  • Refahi-Lyamani F, Saadouni S, Costentin J, Bonnet J-J (1995) Interaction of two sulfhydryl reagents with a cation recognition site on the neuronal dopamine carrier evidences small differences between [3H]GBR 12783 and [3H]cocaine binding sites. Naunyn-Schmiedeberg’s Arch Pharmacol 351:136–145

    CAS  Google Scholar 

  • Reith MEA, Selmeci G (1992) Radiolabeling of dopamine uptake sites in mouse striatum: comparison of binding sites for cocaine, mazindol, and GBR 12935. Naunyn-Schmiedeberg’s Arch Pharmacol 345:309–318

    CAS  Google Scholar 

  • Reith MEA, Coffey LL (1993) Cationic and anionic requirements for the binding of 2b-carbomethoxy-3b-(4-fluorophenyl)[3H]tropane to the dopamine uptake carrier. J Neurochem 61:167–177

    Article  PubMed  CAS  Google Scholar 

  • Revay R, Vaughan R, Grant S, Kuhar MJ (1996) Dopamine transporter immunohistochemistry in median eminence, amygdala, and other areas of the rat brain. Synapse 22:93–99

    Article  PubMed  CAS  Google Scholar 

  • Richfield EK (1993) Zinc modulation of drug binding, cocaine affinity states, and dopamine uptake on the dopamine uptake complex. Mol Pharmacol 43:100–108

    PubMed  CAS  Google Scholar 

  • Richtand NM, Kelsoe JR, Segal DS, Kuczenski R (1995) Regional quantification of dopamine transporter mRNA in rat brain using a ribonuclease protection assay. Neurosci Lett 200:73–76

    Article  PubMed  CAS  Google Scholar 

  • Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Sience 237:1219–1223

    Article  CAS  Google Scholar 

  • Roberts DCS, Zis AP, Fibiger HC (1975) Ascending catecholaminergic pathways and amphetamine-induced locomotor activity: importance of dopamine and apparent noninvolvement of norepinephrine. Brain Res 93:441–451

    Article  PubMed  CAS  Google Scholar 

  • Roberts DCS, Corcoran ME, Fibiger HC (1977) On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav 6:615–620

    Article  PubMed  CAS  Google Scholar 

  • Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, Giros B, Miller GW, Caron MG (1998) Cocaine self-administration in dopamine-transporter knockout mice. Nature Neurosci 1:132–137

    Article  PubMed  CAS  Google Scholar 

  • Ross SB (1979) The central stimulatory action of inhibitors of the dopamine uptake. Life Sci 24:159–168

    Article  PubMed  CAS  Google Scholar 

  • Ross SB, Renyi AL (1967) Inhibition of the uptake of tritiated catecholamines by antidepressant and related agents. Eur J Pharmacol 2:181–186

    Article  PubMed  CAS  Google Scholar 

  • Rutledge CO (1978) Effect of metabolic inhibitors and ouabain on amphetamine- and potassium-induced release of biogenic amines from isolated brain tissue. Biochem Pharmacol 27:511–516

    Article  PubMed  CAS  Google Scholar 

  • Sallee FR, Fogel EL, Schwartz E, Choi S-M, Curran DP, Niznik HB (1989) Photoaffinity labeling of the mammalian dopamine transporter. FEBS Lett 256:219–224

    Article  PubMed  CAS  Google Scholar 

  • Sander T, Harms H, Podschus J, Finckh U, Nickel B, Rolfs A, Rommelspacher H, Schmidt LG (1997) Allelic association of a dopamine transporter gene polymorphism in alcohol dependence with withdrawal seizures or delirium. Biol Psychiat 41:299–304

    Article  PubMed  CAS  Google Scholar 

  • Sano A, Kondoh K, Kakimoto Y, Kondo I (1993) A 40-nucleotide repeat polymorphism in the human dopamine transporter gene. Human Genet 91:405–406

    Article  CAS  Google Scholar 

  • Saporito MS, Heikkila RE, Youngster SK, Nicklas WJ, Geller HM (1992) Dopaminergic neurotoxicity of 1-methyl-4-phenylpyridinium analogs in cultured neurons: relationship to the dopamine uptake system and inhibition of mitochondrial respiration. J Pharmacol Exp Ther 260:1400–1409

    PubMed  CAS  Google Scholar 

  • Scatton B, Dubois A, Dubocovich ML, Zahniser NR, Faga D (1985) Quantitative autoradiography of 3H-nomifensine binding sites in rat brain. Life Sci 36:815–822

    Article  PubMed  CAS  Google Scholar 

  • Schechter MD, Cook PG (1975) Dopaminergic mediation of the interoceptive cue produced by d-amphetamine in rats. Psychopharmacologia 42:185–193

    Article  PubMed  CAS  Google Scholar 

  • Scheel-Kriiger J (1971) Comparative studies of various amphetamine analogues demonstrating different interactions with the metabolism of the catecholamines in the brain. Eur J Pharmacol 14:47–59

    Article  Google Scholar 

  • Scheffel U, Dannals RF, Wong DF, Yokoi F, Carroll FI, Kuhar MJ (1992) Dopamine transporter imaging with novel, selective cocaine analogs. Neuroreport 3:969–972

    Article  PubMed  CAS  Google Scholar 

  • Schneider JS, Yuwiler A, Markham CH (1987) Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP. Brain Res 411:144–150

    Article  PubMed  CAS  Google Scholar 

  • Schoemaker H, Pimoule C, Arbilla S, Scatton B, Javoy-Agid F, Langer SZ (1985) Sodium dependent [3H]cocaine binding associated with dopamine uptake sites in the rat striatum and human putamen decrease after dopaminergic denervation and in Parkinson’s disease. Naunyn Schmiedeberg’s Arch Pharmacol 329:227–235

    Article  CAS  Google Scholar 

  • Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI (1998) Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci 18:2697–2708

    PubMed  CAS  Google Scholar 

  • Shimada S, Kitayama S, Lin C-L, Patel A, Nanthakumar E, Gregor P, Kuhar M, Uhl G (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254:576–578

    Article  PubMed  CAS  Google Scholar 

  • Shimada S, Kitayama S, Walther D, Uhl G (1992) Dopamine transporter mRNA: dense expression in ventral midbrain neurons. Mol Brain Res 13:359–362

    Article  PubMed  CAS  Google Scholar 

  • Silvia CP, Jaber M, King GR, Ellinwood EH, Caron MG (1997) Cocaine and amphetamine elicit differential effects in rats with a unilateral injection of dopamine transporter antisense oligodeoxynucleotides. Neuroscience 76:737–747

    Article  PubMed  CAS  Google Scholar 

  • Sitges M, Reyes A, Chiu LM (1994) Dopamine transporter mediated release of dopamine: role of chloride. J Neurosci Res 39:11–22

    Article  PubMed  CAS  Google Scholar 

  • Sitte HH, Huck S, Reither H, Boehm S, Singer AE, Pifl C (1998) Carrier-mediated release, transport rates, and charge transfer induced by amphetamine, tyramine, and dopamine in mammalian cells transfected with the human dopamine transporter. J Neurochem 71:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Smiley JF, Williams SM, Szigeti K, Goldman-Rakic PS (1992) Light and electron microscopic characterization of dopamine-immunoreactive axons in human cerebral cortex. J Comp Neurol 321:325–335

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Coyle JT (1969) Regional differences in H3-norepinephrine and H3-dopamine uptake into rat brain homogenates. J Pharmacol Exp Ther 165:78–86

    PubMed  CAS  Google Scholar 

  • Sonders MS, Amara SG (1996) Channels in transporters. Curr Opin Neurobiol 6:294–302

    Article  PubMed  CAS  Google Scholar 

  • Sonders MS, Zhu S-J, Zahniser NR, Kavanaugh MP, Amara SG (1997) Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J Neurosci 17:960–974

    PubMed  CAS  Google Scholar 

  • Sora I, Wichems C, Takahashi N, Li X-F, Zeng Z, Revay R, Lesch K-P, Murphy DL, Uhl GR (1998) Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Proc Natl Acad Sci USA 95:7699–7704

    Article  PubMed  CAS  Google Scholar 

  • Souery D, Lipp O, Mahieu B, Mendelbaum K, de Martelaer V, van Broeckhoven C, Mendlewicz J (1996) Association study of bipolar disorder with candidate genes involved in catecholamine neurotransmission: DRD2, DRD3, DAT1, and TH genes. Am J Med Genet (Neuropsychiat Genet) 67:551–555

    Article  CAS  Google Scholar 

  • Stamford JA, Kruk ZL, Millar J (1986) In vivo characterization of low affinity striatal dopamine uptake: drug inhibition profile and relation to dopaminergic innervation density. Brain Res 373:85–91

    Article  PubMed  CAS  Google Scholar 

  • Strader CD, Sigal IS, Dixon RA (1989) Structural basis of ß-adrenergic receptor function. FASEB J 3:1825–1832

    PubMed  CAS  Google Scholar 

  • Sugamori KS, Lee FJS, Pristupa ZB, Niznik HB (1999) A cognate dopamine transporter-like activity endogenously expressed in a COS-7 kidney-derived cell line. FEBS Lett 451:169–174

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Chen T-K, Lau YY, Kristensen H, Rayport S, Ewing A (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102–4108

    PubMed  CAS  Google Scholar 

  • Tiihonen J, Kuikka J, Bergström K, Hakola P, Karhu J, Ryynänen O-P, Föhr J (1995) Altered striatal dopamine re-uptake site densities in habitually violent and nonviolent alcoholics. Nature Med 1:654–657

    Article  PubMed  CAS  Google Scholar 

  • Uchikawa T, Kiuchi Y, Yura A, Nakachi N, Yamazaki Y, Yokomizo C, Oguchi K (1995) Ca2+-dependent enhancement of [3H] dopamine uptake in rat striatum: possible involvement of calmodulin-dependent kinases. J Neurochem 65:2065–2071

    Article  PubMed  CAS  Google Scholar 

  • Uhl GR, O’Hara B, Shimada S, Zaczek R, DiGiorgianni J, Nishimori T (1991) Dopamine transporter: expression in Xenopus oocytes. Mol Brain Res 9:23–29

    Article  PubMed  CAS  Google Scholar 

  • Uhl GR, Walther D, Mash D, Faucheux B, Javoy-Agid F (1994) Dopamine transporter messenger RNA in Parkinson’s disease and control substantia nigra neurons. Ann Neurol 35:494–498

    Article  PubMed  CAS  Google Scholar 

  • Uretsky NJ, Iversen LL (1970) Effects of 6-hydroxydopamine on catecholamine containing neurones in the rat brain. J Neurochem 17:269–278

    Article  PubMed  CAS  Google Scholar 

  • Usdin TB, Mezey E, Chen C, Brownstein MJ, Hoffman BJ (1991) Cloning of the cocaine-sensitive bovine dopamine transporter. Proc Natl Acad Sci USA 88:11168–11171

    Article  PubMed  CAS  Google Scholar 

  • Van der Zee P, Koger HS, Gootjes J, Hespe W (1980) Aryl-1,4-dialk(en)ylpiperazines as selective and very potent inhibitors of dopamine uptake. Eur J Med Chem 15:363–370

    Google Scholar 

  • Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR (1992b) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14:1104–1106

    Article  PubMed  CAS  Google Scholar 

  • Vandenbergh DJ, Persico AM, Uhl GR (1992a) A human dopamine transporter cDNA predicts reduced glycosylation, displays a novel repetitive element and provides racially-dimorphic TaqI RFLPs. Mol Brain Res 15:161–166

    Article  PubMed  CAS  Google Scholar 

  • Vaugeois JM, Bonnet J-J, Duterte-Boucher D, Costentin J (1993) In vivo occupancy of the striatal dopamine uptake complex by various inhibitors does not predict their effects on locomotion. Eur J Pharmacol 230:195–201

    Article  PubMed  CAS  Google Scholar 

  • Vaughan RA (1995) Photoaffinity-labeled ligand binding domains on dopamine transporters identified by peptide mapping. Mol Pharmacol 47:956–964

    PubMed  CAS  Google Scholar 

  • Vaughan RA, Uhl GR, Kuhar MJ (1993) Dopamine transporter recognition by antipeptide antibodies. Cell Mol Neurosci 4:209–215

    Article  CAS  Google Scholar 

  • Vaughan RA, Kuhar MJ (1996) Dopamine transporter ligand binding domains. Structural and functional properties revealed by limited proteolysis. J Biol Chem 271:21672–21680

    Article  PubMed  CAS  Google Scholar 

  • Vaughan RA, Huff RA, Uhl GR, Kuhar MJ (1997) Protein kinase C-mediated phosphorylation and functional regulation of dopamine transporters in striatal synaptosomes. J Biol Chem 272:15541–15546

    Article  PubMed  CAS  Google Scholar 

  • Vaughan RA, Agoston GE, Lever JR, Newman AH (1999) Differential binding of tropane-based photoaffinity ligands on the dopamine transporter. J Neurosci 19:630–636

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fischman MW, Foltin RW, Fowler JS, Abumrad NN, Vitkun S, Logand J, Gatley SJ, Pappas N, Hitzemann R, Shea CE (1997) Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386:827–830

    Article  PubMed  CAS  Google Scholar 

  • Waldman ID, Rowe DC, Abramowitz A, Kozel ST, Mohr JH, Sherman SL, Cleveland HH, Sanders ML, Gard JMC, Stever C (1998) Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtype and severity. Am J Human Genet 63:1767–1776

    Article  CAS  Google Scholar 

  • Wall SC, Innis RB, Rudnick G (1993) Binding of the cocaine analog 2b-carbomethoxy-3b-(4-[125I]iodophenyl)tropane to serotonin and dopamine transporters: different ionic requirements for substrate and 2b-carbomethoxy-3b-(4-[125I]iodophenyl)tropane binding. Mol Pharmacol 43:264–270

    PubMed  CAS  Google Scholar 

  • Wall SC, Gu H, Rudnick G (1995) Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux. Mol Pharmacol 47:544–550

    PubMed  CAS  Google Scholar 

  • Wang JB, Morikawa A, Uhl GR (1995) Dopamine transporter cysteine mutants: second extracellular loop cysteines are required for transporter expression. J Neurochem 64:1416–1419

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DD, Edwards AM, Chapman BM, Ondo JG (1993) A model of the sodium dependence of dopamine uptake in rat striatal synaptosomes. Neurochem Res 18:927–936

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DD, Edwards AM, Chapman BM, Ondo JG (1994) Effects of cocaine on sodium dependent dopamine uptake in rat striatal synaptosomes. Neurochem Res 19:49–56

    Article  PubMed  CAS  Google Scholar 

  • Wilson JM, Levey Al, Rajput A, Ang L, Guttman M, Shannak K, Niznik HB, Hornykiewicz O, Pifl C, Kish SJ (1996) Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease. Neurology 47:718–726

    Article  PubMed  CAS  Google Scholar 

  • Wong DF, Harris JC, Naidu S, Yokoi F, Marenco S, Dannals RF, Ravert HT, Yaster M, Evans A, Rousset O, Bryan RN, Gjedde A, Kuhar MJ, Breese GR (1996) Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo. Proc Natl Acad Sci USA 93:5539–5543

    Article  PubMed  CAS  Google Scholar 

  • Woolverton WL, Ricaurte GA, Forno LS, Seiden LS (1989) Long-term effects of chronic methamphetamine administration in rhesus monkeys. Brain Res 486:73–78

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Reith MEA (1997) WIN 35,428 and mazindol are mutually exclusive in binding to the cloned human dopamine transporter. J Pharmacol Exp Ther 282:920–927

    PubMed  CAS  Google Scholar 

  • Yamashita H, Kitayama S, Zhang Y-X, Takahashi T, Dohi T, Nakamura S (1995) Effect of nicotine on dopamine uptake in COS cells possessing the rat dopamine transporter and in PC12 cells. Biochem Pharmacol 49:742–745

    Article  PubMed  CAS  Google Scholar 

  • Zaczek R, Culp S, DeSouza EB (1991) Interactions of [3H]amphetamine with rat brain synaptosomes. II. Active transport. J Pharmacol Exp Ther 257:830–835

    PubMed  CAS  Google Scholar 

  • Zahniser NR, Larson GA, Gerhardt GA (1999) In vivo dopamine clearance rate in rat striatum: regulation by extracellular dopamine concentration and dopamine transporter inhibitors. J Pharmacol Exp Ther 289:266–277

    PubMed  CAS  Google Scholar 

  • Zhang L, Elmer LW, Little KY (1998) Expression and regulation of the human dopamine transporter in a neuronal cell line. Mol Brain Res 59:66–73

    Article  PubMed  CAS  Google Scholar 

  • Zhu S-J, Kavanaugh MP, Sonders MS, Amara SG, Zahniser NR (1997) Activation of protein kinase C inhibits uptake, currents and binding associated with the human dopamine transporter expressed in Xenopus oocytes. J Pharmacol Exp Ther 282:1358–1365

    PubMed  CAS  Google Scholar 

  • Zimányi I, Lajtha A, Reith MEA (1989) Comparison of characteristics of dopamine uptake and mazindol binding in mouse striatum. Naunyn Schmiedeberg’s Arch Pharmacol 340:626–632

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pifl, C., Caron, M.G. (2002). The Dopamine Transporter: Molecular Biology, Pharmacology and Genetics. In: Di Chiara, G. (eds) Dopamine in the CNS I. Handbook of Experimental Pharmacology, vol 154 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56051-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56051-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62726-2

  • Online ISBN: 978-3-642-56051-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics