Skip to main content

Cerebral Resuscitation from Temporary Complete Global Brain Ischemia

  • Chapter
Cerebral Blood Flow

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 37))

  • 175 Accesses

Abstract

The complete global brain ischemia of cardiac arrest (CA), potentially reversible by cardiopulmonary-cerebral resuscitation (CPCR) [1,2] is the most common cause of sudden coma and death [1,3]. Sudden CA kills about 400,000 persons each year in the U.S. In addition, in the over 100,000 accidental deaths each year, coma occurs as a result of trauma, intoxication, asphyxiation, severe shock, or other insults. This talk focused on CPCR research results by our teams, and mentioned only some of the important contributions made by others, most of which have been reviewed [47]. Epidemiologic studies suggest that the chance for conscious survival of normothermic CAdecreases by about 10% for every minute of normothermic complete global brain ischemia (no-flow) [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Safar P, Bircher NG. Cardiopulmonary-Cerebral Resuscitation. An Introduction to Resuscitation Medicine. World Federation of Societies of Anaesthesiologists. 3rd ed. London: A Laerdal, Stavanger; WB Saunders; 1988.

    Google Scholar 

  2. Safar P. Resuscitation of the ischemic brain. In: Albin MS, editor. Textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. New York: McGraw-Hill; 1997. p. 557–93.

    Google Scholar 

  3. American Heart Association (AHA). Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. Suppl. Vol. 102/8, 2000. p. 1–1–380

    Google Scholar 

  4. Safar P. Resuscitation from clinical death: path ophysiologic limits and therapeutic potentials. Crit Care Med 1988; 16:923–41.

    Article  PubMed  CAS  Google Scholar 

  5. Siesjo BK, Siesjo P. Mechanisms of secondary bra in injury. Eur J Anaesthesiol 1996; 13(3): 247–68.

    Article  PubMed  CAS  Google Scholar 

  6. Warner OS. Effects of anesthetic agents and temperature on the injured brain. In: Albin MS, editor. Textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. New York: McGraw-Hill; 1997. p. 595–611.

    Google Scholar 

  7. Safar P, Paradis NA. Asphyxial cardiac death. In: Paradis N, Halperin HR, Nowak RM, editors. Cardiac arrest. The science and practice of resuscitation medicine. Philadelphia: Williams and Wilkins; 1996. p. 702–26.

    Google Scholar 

  8. Safar P, Aguto-Escarraga L, Chang F. Upper airway obstruction in the unconscious patient. J Appl Physiol 1959;14:760–4.

    PubMed  CAS  Google Scholar 

  9. Safar P. Ventilatory efficacy of mouth-to-mouth artificial respiration. Airway obstruction during manual and mouth-to-mouth artificial respiration. JAMA 1958;167:335–41.

    CAS  Google Scholar 

  10. Kouwenhoven WB, Jude JR, Knickerbocker GG. Closed-chest cardiac massage. JAMA 1960;173:1064–7.

    PubMed  CAS  Google Scholar 

  11. Safar P, Brown TC, Holtey WH, Wilder R. Ventilation and circulation with closed chest cardiac massage in man. JAMA 1961;176:574–6.

    PubMed  CAS  Google Scholar 

  12. Eisenburger P, Safar P. Life supporting first aid (LSFA) training of the public. Review and recommendations. Resuscitation 1999;41:3–18.

    Article  PubMed  CAS  Google Scholar 

  13. Safar P, DeKornfeld TJ, Pearson JW, Redding JS. Intensive care unit. Anaesthesia 1961;16:275–84.

    Article  PubMed  CAS  Google Scholar 

  14. Grenvik A, Ayres SM, Holbrook PR, Shoemaker W, editors. Society of Critical Care Medicine. 4th ed. Philadelphia (PA): WB Saunders Publishers; 2000.

    Google Scholar 

  15. Negovsky VA, Gurvitch AM, Zolotokrylina ES. Postresuscitation Disease. Amsterdam: Elsevier; 1983.

    Google Scholar 

  16. Ernster L. Biochemistry of reoxygenation injury. Crit Care Med 1988;16:947–53.

    Article  PubMed  CAS  Google Scholar 

  17. Safar P. Community-wide cardiopulmonary resuscitation. J Iowa Med Soc 1964 Nov:629-35.

    Google Scholar 

  18. American Society of Anesthesiologists. Committee on Acute Medicine (Safar P, Chairman). Community-wide emergency medical services. JAMA 1968;204:595–602.

    Article  Google Scholar 

  19. Cummins RO, Ornato JP, Thies WH, Pepe PE. Improving survival from sudden cardiac arrest: the “chain of survival” concept. Circulation 1991;83:1832–47.

    PubMed  CAS  Google Scholar 

  20. Safar P. History of Cardiopulmonary-Cerebral Resuscitation. In: Kaye W, Bircher N, editors. Cardiopulmonary resuscitation. New York: Churchill Livingstone; 1989. p.1–53.

    Google Scholar 

  21. Kety SS, Schmidt CF. The nitrous oxide method for quantitative determination of cerebral blood flow in man: theory, procedure, and normal values. J Clin Invest 1948;27:476–83.

    Article  Google Scholar 

  22. Wechsler RL, Dripps RD, Kety SS. Blood flow and oxygen consumption of the human brain during anesthesia produced by thiopental. Anesthesiology 1951;12:308–14.

    Article  PubMed  CAS  Google Scholar 

  23. Stone HH, Donnelly C, Frobese AS. The effect of lowered body temperature on the cerebral hemodynamics and metabolism of man. Surg Gyn Obstec 1956;103:313–22.

    Google Scholar 

  24. Stone HH, MacKrell TN, Brandstater GL, Hardak BJ, Nemir P. The effect of induced hemorrhagic shock on the cerebral circulation and metabolism of man. Surg Forum 1954;789–803.

    Google Scholar 

  25. Stewart GN, Guthrie C, Burns RI. The resuscitation of the central nervous system of mammals. J Exper Med 1906;8:289.

    Article  CAS  Google Scholar 

  26. Negovsky VA. Fifty years of the Institute of General Reanimatology of the USSR Academy of Medical Sciences. Crit Care Med 1988;16:287–91.

    Article  PubMed  CAS  Google Scholar 

  27. Rossen R, Cabat H, Anderson JP. Acute arrest of cerebral circulation in man. Arch Neurol 1943;50:510–28.

    Google Scholar 

  28. Cole S, Corday E. Four-minute limit for cardiac resuscitation. JAMA 1956;161:1454–8.

    CAS  Google Scholar 

  29. Redding JS, Cozine RA. A comparison of open and closed-chest cardiac massage in dogs. Anesthesiology 1961;22:280–5.

    Article  PubMed  CAS  Google Scholar 

  30. Bircher N, Safar P, Stewart R. A comparison of standard, “MAST”-augmented, and open-chest CPR in dogs. Crit Care Med 1980;8:147–52.

    Article  PubMed  CAS  Google Scholar 

  31. Bircher N, Safar P. Cerebral preservation during cardiopulmonary resuscitation. Crit Care Med 1985;13:185–90.

    Article  PubMed  CAS  Google Scholar 

  32. Schleien CL, Dean JM, Koehler RC, Michael JR, Chantarojanasiri T, Traystman R, et al. Effect of epinephrine on cerebral and myocardial perfusion in an infant animal preparation of cardiopulmonary resuscitation. Circulation 1986;73:809–17.

    Article  PubMed  CAS  Google Scholar 

  33. Brown CG, Werman HA, Davis EA, Hamlin R, Hobson J, Ashton JA. Comparative effect of graded doses of epinephrine on regional brain blood flow during CPR in a swine model. Ann Emerg Med 1986;15:1138–44.

    Article  PubMed  CAS  Google Scholar 

  34. del Guercio LRM, Feins NR, Cohn JD, Coomaraswamy RP, Wollman SB, State D. Comparison of blood flow during external and internal cardiac massage in man. Circulation 1965;32 (Suppl 1):1–172–I–180.

    Google Scholar 

  35. Stajduhar K, Safar P, Steinberg R, Sotosky M, McNulty P, Alifimoff J, et al. Cerebral blood flow and other benefits from wider use of open-chest cardiopulmonary resuscitation [abstract]. Crit Care Med 1983;11:226.

    Article  Google Scholar 

  36. Sanders AB, Kern KB, Ewy GA, Atlas M, Bailey L. Improved resuscitation from cardiac arrest with open-chest massage. Ann Emerg Med 1984;13:672–5.

    Article  PubMed  CAS  Google Scholar 

  37. Stephenson HEJr, Reid LC, Hinton JW. Some common denominators in 1200 cases of cardiac arrest. Ann Surg 1953;137:731–44.

    Article  PubMed  Google Scholar 

  38. Hachimi-Idrissi S, Leeman J, Hubloue Y, Huyghens L, Corne L. Open chest cardiopulmonary resuscitation in out-of-hospital cardiac arrest. Resuscitation 1997;35:151–6.

    Article  PubMed  CAS  Google Scholar 

  39. Beck CS, Pritchard H, Feil SH. Ventricular fibrillation of long duration abolished by electric shock. JAMA 1947;135:985.

    CAS  Google Scholar 

  40. Eisenberg MS, Horwood BT, Cummins RO, Reynolds-Haertle R, Hearne TR. Cardiac arrest and resuscitation: a tale of 29 cities. Ann Emerg Med 1990;19:179–86.

    Article  PubMed  CAS  Google Scholar 

  41. Safar P, Abramson NS, Angelos M, Cantadore R, Leonov Y, Levine R, et al. Emergency cardiopulmonary bypass for resuscitation from prolonged cardiac arrest. Am J Emerg Med 1990;8:55–67.

    Article  PubMed  CAS  Google Scholar 

  42. Safar P. Resuscitation from clinical death: patho-physiologic limits and therapeutic potentials. Crit Care Med 1988;16:923–41.

    Article  PubMed  CAS  Google Scholar 

  43. Pretto E, Safar P, Saito R, Stezoski W, Kelsey S. Cardiopulmonary bypass after prolonged cardiac arrest in dogs. Ann Emerg Med 1987;16:611–9.

    Article  PubMed  CAS  Google Scholar 

  44. Reich H, Angelos M, Safar P, Sterz F, Leonov Y. Cardiac resuscitability with cardiopulmonary bypass after increasing ventricular fibrillation times in dogs. Ann Emerg Med 1990;19:887–90.

    Article  PubMed  CAS  Google Scholar 

  45. Angelos M, Safar P, Reich H. External cardiopulmonary resuscitation preserves brain viability after prolonged cardiac arrest in dogs. Am J Emerg Med 1991;9:436–43.

    Article  PubMed  CAS  Google Scholar 

  46. Angelos M, Safar P, Reich H. A comparison of cardiopulmonary resuscitation with cardiopulmonary bypass after prolonged cardiac arrest in dogs. Reperfusion pressures and neurologic recovery. Resuscitation 1991;21:121–35.

    Article  PubMed  CAS  Google Scholar 

  47. Tisherman S, Chabal C, Safar P, Stezoski W. Resuscitation of dogs from cold-water submersion using cardiopulmonary bypass. Ann Emerg Med 1985;14:389–96.

    Article  PubMed  CAS  Google Scholar 

  48. Tisherman SA, Vandevelde K, Safar P, Morioka T, Obrist W, Corne L, et al. Future directions for resuscitation research. V. Ultra-advanced life support. Resuscitation 1997;34(Pt 5): 281–93.

    Article  PubMed  CAS  Google Scholar 

  49. Tisherman S, Safar P, Kormos R, Paris P, Peitzman A. Clinical feasibility of emergency cardiopulmonary bypass for external CPR-refractory prehospital cardiac arrest [abstract]. Resuscitation 1994;28:S5.

    Article  Google Scholar 

  50. Michenfelder JK, Theye RA. The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology 1970;33:430–9.

    Article  PubMed  CAS  Google Scholar 

  51. Kramer RS, Sanders AP, Lesage AM, Woodhall B, Sealy WC. The effect of profound hypothermia on preservation of cerebral ATP content during circulatory arrest. J Thorac Cardiovasc Surg 1968;56:699–709.

    PubMed  CAS  Google Scholar 

  52. Kampschulte S, Morikawa S, Safar P. Recovery from anoxic encephalopathy following cardiac arrest [abstract]. Fed Proc 1969;28:522.

    Google Scholar 

  53. Safar P. Introduction to chapter s 27–29. Resuscitation of the arrested brain. In: Safar P, Elam I, editors. Advances in cardiopulmonary resuscitation. New York: Springer-Verlag;1977.p. 177–81.

    Chapter  Google Scholar 

  54. Hossmann K-A, Sato K. Recovery of neuronal function after prolonged cerebral ischemia. Science 1970;168:375–6.

    Article  PubMed  CAS  Google Scholar 

  55. Hossmann KA, Lechtape-Gruter H, Hossmann V. The role of cerebral blood flow for the recovery of the brain after prolonged ischemia. Z Neurol 1973;204:281–99.

    Article  PubMed  CAS  Google Scholar 

  56. Ames AIII, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 1968;52:437–53.

    PubMed  Google Scholar 

  57. Cantu R, Ames A, DiGiancinto G, Dixon J. Hypotension. A major factor limiting recovery from cerebral ischemia. J Surg Res 1969;9:525–9.

    Article  PubMed  CAS  Google Scholar 

  58. Fischer EG, Ames AIII, Hedley-Whyte ET, O’Gorrnan S. Reassessment of cerebral capillary changes in acute global ischemia and the irrelationship to the “no-reflow phenomenon:” Stroke 1977;8:36–9.

    Article  PubMed  CAS  Google Scholar 

  59. Lind B, Snyder J, Safar P: Total brain ischaemia in dogs. Cerebral physiological and metabolic change s after 15 minutes of circulatory arre st. Resuscitation 1975;4(2):97–113.

    Article  PubMed  CAS  Google Scholar 

  60. Snyder JV, Nemoto EM, Carroll RG, Safar P. Global ischemia in dogs: intracranial pressures, brain blood flow and metabolism. Stroke 1975;6:21–7.

    Article  PubMed  CAS  Google Scholar 

  61. Plum F, editor. The clinical problem: how much anoxia-ischemia damages the brain? Symposium on brain ischemia. Arch Neurol 1973;29:259–360.

    Google Scholar 

  62. Plum F, Posner JB. The Diagno sis of stupor and coma. Philadelphia: FA Davis, 1980.

    Google Scholar 

  63. Kagstroem E, Smith ML, Siesjo BK. Local cerebral blood flow in the recovery period following complete cerebral ischemia in the rat. J Cereb Blood Flow Metab 1983;3:170–82.

    Article  Google Scholar 

  64. Wolfson SK, Safar P, Reich H, Clark JM, Gur D, Stezoski W, et al. Dynamic heterogeneity of cerebral hypoperfusion after prolonged cardiac arrest in dogs measured by the stable xenon /CT technique: a preliminary study. Resuscitation 1992;23:1–20.

    Article  PubMed  Google Scholar 

  65. Sterz F, Leonov Y, Safar P, Johnson D, Oku K, Tisherman S, et al. Multifocal cerebral blood flow by Xe-CT and global cerebral metabolism after prolonged cardiac arrest in dogs. Reperfusion with open-chest CPR or cardiopulmonary bypass. Resuscitation 1992;24:27–47.

    PubMed  CAS  Google Scholar 

  66. Leonov Y, Sterz F, Safar P, Johnson DW, Tisherman SA, Oku K. Hypertension with hemodilution prevent s multifocal cerebral hypoperfusion after cardiac arrest in dogs. Stroke 1992;23:45–53.

    Article  PubMed  CAS  Google Scholar 

  67. Sterz F, Safar P, Johnson DW, Oku K, Tisherman SA. Effects of U74006F on multifocal cerebral blood flow and metabolism after cardiac arrest in dogs. Stroke 1991;22:889–95.

    Article  PubMed  CAS  Google Scholar 

  68. Oku K, Sterz F, Safar P, Johnson D, Obrist W, Leonov Y, et al. Mild hypothermia after cardiac arrest in dogs does not affect postarrest multifocal cerebral hypoperfusion. Stroke 1993; 24:1590–8.

    Article  PubMed  CAS  Google Scholar 

  69. Oku K, Kuboyama K, Safar P, Obrist W, Sterz F, Leonov Y, et al. Cerebral and systemic arteriovenous oxygen monitoring after cardiac arrest. Inadequate cerebral oxygen delivery. Resuscitation 1994;27:141–52.

    Article  PubMed  CAS  Google Scholar 

  70. Kuboyama K, Safar P, Oku K, Obrist W, Leonov Y, Sterz S, et al. Mild hypothermia after cardiac arrest in dogs does not affect postarrest cerebral oxygen uptake/delivery mismatching. Resuscitation 1994;27:231–44.

    Article  PubMed  CAS  Google Scholar 

  71. Beckstead JE, Tweed WA, Lee J, MacKeen WL. Cerebral blood flow and metabolism in man following cardiac arrest. Stroke 1978;9:569–73.

    Article  PubMed  CAS  Google Scholar 

  72. Cohan SL, Mun SK, Petite J, Correia J, Tavelra Da Silva AT. Cerebral blood flow in humans following resuscitation from cardiac arrest. Stroke 1989;20:761–5.

    Article  PubMed  CAS  Google Scholar 

  73. Symon L. Flow thresholds in brain ischemia and the effects of drugs. Brit J Anaesth 1985;57:34–43.

    Article  PubMed  CAS  Google Scholar 

  74. Bottiger BW, Motsch J, Bohrer H, Boker T, Aulmann M, Nawroth PP, et al. Activation of blood coagulation after cardiac arrest is not balanced adequately by activation of endogenous fibrinolysis. Circulation 1995;92:2572–8.

    PubMed  CAS  Google Scholar 

  75. Van Harreveld A, Ochs S. Cerebral impedance changes after circulatory arrest. Amer J Physiol 1957; 187:180.

    Google Scholar 

  76. Schanne FA, Kane AB, Young EE, Farber JL. Calcium dependence of toxic cell death: a final common pathway. Science 1979;206:700–2.

    Article  PubMed  CAS  Google Scholar 

  77. Miller RJ. Multiple calcium channels and neuronal function. Science 1987;235:46–52.

    Article  PubMed  CAS  Google Scholar 

  78. Rehncrona S, Rosen I, Siesjo BK. Excessive cellular acidosis: an important mechanism of neuronal damage in the brain? Acta Physiol Scand 1980;110:425–7.

    Article  Google Scholar 

  79. Nemoto EM, Evans RW, Kochanek PM. Free fatty acid liberation in the pathogenesis and therapeutic brain damage. In: Bazan NG, Braquet P, Ginsberg MD, editors. Advances in neurochemistry, neurochemistry correlates of cerebral ischemia. New York: Plenum Press; 1992. p.183–218.

    Google Scholar 

  80. Bandaranayke NM, Nemoto EM, Stezoski SW. Rat brain osmolality during barbiturate anesthesia and global brain ischemia. Stroke 1978;9:249–54.

    Article  Google Scholar 

  81. Globus MY, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Direct evidence for acute and massive norepinephrine release in the hippocampus during transient ischemia. J Cereb Blood Flow 1989;9:892–6.

    Article  CAS  Google Scholar 

  82. Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Review. Ann Neurol 1986;19:105–11.

    Article  PubMed  CAS  Google Scholar 

  83. Benveniste H. The excitotoxine hypotheses in relation to cerebral ischemia. Cer Vase & Brain Metabolism Reviews 1991;3:213–45.

    CAS  Google Scholar 

  84. Globus MYT, Ginsberg MD, Busto R. Excitotoxic index — a biochemical marker of selective vulnerability. Neuroscience Letter 1991;127:39–42.

    Article  CAS  Google Scholar 

  85. Fridovich I. Superoxide radical: an endogenous toxicant. Ann Rev Pharmacol Toxicol 1983;23:239–57.

    Article  CAS  Google Scholar 

  86. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985;312:159–63.

    Article  PubMed  CAS  Google Scholar 

  87. Kontos HA. Oxygen radicals in CNS damage. Review article. Chem Biol Interactions 1989;72:229–55.

    Article  CAS  Google Scholar 

  88. Traystman RJ, Kirsch JR, Koehler RC. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol 1991;71(4):1185–95.

    PubMed  CAS  Google Scholar 

  89. Siesjo BK, Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depress ion: a unifying hypothesis. J Cereb Blood Flow Metab 1989;9:127–40.

    Article  PubMed  CAS  Google Scholar 

  90. Siesjo BK, Ouyuang YB, Kristian T, Elmer E, Li PA, Uchino H. Role of mitrochondria in immediate and delayed reperfusion damage. In: Ito U, Kirino T, Kuroiwa T, et al, editors. Maturation phenomenon in cerebral ischemia III. Berlin: Springer-Verlag; 1999.

    Google Scholar 

  91. Uchino H, Elmer E, Uchino K, Li PA, He QP, Smith MI., Siesjo BK. Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat. Brain Res 1998; 812:216–26.

    Article  PubMed  CAS  Google Scholar 

  92. Nemoto EM, Bleyaert AL, Stezoski SW, Moossy J, Rao GR, Safar P. Global brain ischemia: a reproducible monkey model. Stroke 1977;8(5):558–64.

    Article  PubMed  CAS  Google Scholar 

  93. Radovsky A, Safar P, Sterz F, Leonov Y, Reich H, Kuboyama K. Regional prevalence and distribution of ischemic neurons in dog bra ins 96 hours after cardiac arrest of 0 to 20 minutes. Stroke 1995;26:2127–34.

    Article  PubMed  CAS  Google Scholar 

  94. Jenkins LW, Povlishock JT, Becker DP, Miller JD, Sullivan HG. Complete cerebral ischemia: an ultrastructural study. Acta Neuropathol (Berl) 1979;48:113–25.

    Article  CAS  Google Scholar 

  95. Radovsky A, Katz L, Ebmeyer U, Safar P. Ischemic neurons in rat brains after 6, 8,or 10 minutes of transient hypoxic ischemia. Toxicology 1997;25:500–5.

    CAS  Google Scholar 

  96. Colbourne F, Li H, Buchan AM, Clemens JA. Continuing postischemic neuronal death in CA1: influence of ischemia duration and cytoprotective doses of NBQX and SNX-111 in rats. Stroke 1999 Mar;30(3):662–8.

    Article  PubMed  CAS  Google Scholar 

  97. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neuroscience 1995;15:1001–11.

    CAS  Google Scholar 

  98. Prueckner S, Clark R, Woods R, Behringer W, Khan L, Radovsky A, et al. Cold aortic arch flush decreases apoptosis after exsanguination cardiac arrest in dogs [abstract). Crit Care Med 1999;27:A30.

    Article  Google Scholar 

  99. Takahashi K, Greenberg JH, Jackson P, Maclin K, Zhang J. Neuroprotective effects of inhibiting poly (ADP-Ribose) synthetase on focal cerebral ischem ia in rats. J Cereb Blood Flow Metab 1997;17:1137–42.

    Article  PubMed  CAS  Google Scholar 

  100. Safar P, Gisvold SE, Vaagenes P, Hendrickx HHL, Bar-Joseph G, Bircher N, et al. Long-term animal models for the study of global brain ischemia. In: Wauquier A, et al, editors. Protection of tissues against hypoxia. Amsterdam: Elsevier; 1982.p. 147–70.

    Google Scholar 

  101. Safar P. Long-term animal outcome models for cardiopulmonary-cerebral resuscitation research. Crit Care Med 1985;13:936–40.

    Article  PubMed  CAS  Google Scholar 

  102. Pulsinelli W, Brierley J, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 1982;11:491–8.

    Article  PubMed  CAS  Google Scholar 

  103. Smith ML, Bendek G, Dahlgren N, Rosen I, Sieloch T, Siesjo BK. Models for studying long-term recovery following forebrain ischemia in the rat. A two vessel occlusion model. Acta Neurol Scand 1984;69:385–401.

    Article  PubMed  CAS  Google Scholar 

  104. Bottiger BW, Krumnikl JJ, Gass P, Schmitz B, Motsch J, Martin E. The cerebral “no-flow” phenomenon after cardiac arrest in rats — influence of low-flow reperfusion. Resuscitation 1997;34:79–87.

    Article  PubMed  CAS  Google Scholar 

  105. Bottiger BW, Teschendorf P, Krumnikl J, Vogel P, Galmbacher R, Schmitz B, et al. Global cerebral ischemia due to cardiocirculatory arrest in mice causes neuronal degeneration and early induction of transcription factor genes in the hippocampus. Molecular Brain Research 1999;65:135–42.

    Article  PubMed  CAS  Google Scholar 

  106. Hendrickx H, Safar P, Rao GR, Gisvold SE. Asphyxia, cardiac arrest and resuscitation in rats. Short-term recovery. Resuscitation 1984;12:97–116.

    Article  PubMed  CAS  Google Scholar 

  107. Hendrickx HHL, Safar P, Miller A. Long-term behavioral changes. Resuscitation 1984; 12:117–28.

    Article  PubMed  CAS  Google Scholar 

  108. Katz L, Ebmeyer U, Safar P, Radovsky A, Neumar R. Outcome model of asphyxial cardiac arrest in rats. J Cereb Blood Flow Metab 1995;15:1032–9.

    Article  PubMed  CAS  Google Scholar 

  109. Katz L, Wang Y, Ebmeyer U, Radovsky A, Safar P. Glucose plus insulin infusion improves cerebral outcome after asphyxial cardiac arrest. Neuroreport 1998;9:3363–7.

    Article  PubMed  CAS  Google Scholar 

  110. Katz LM, Callaway CW, Kagan VE, Kochanek PM. Electron spin resonance measure of brain antioxidant activity during ischemia/reperfusion. Neuroreport 1998;9:1587–93.

    Article  PubMed  CAS  Google Scholar 

  111. Neumar RW, Bircher NG, Sim KM, Xiao F, Zadach KS, Radovsky A, et al. Epinephrine and sodium bicarbonate during CPR following asphyxial cardiac arrest in rats. Resuscitation 1994;29:249–63.

    Article  Google Scholar 

  112. Eshel G, Safar P, Radovsky A, Stezoski SW. Hyperthermia-induced cardiac arrest in monkeys: limited efficacy of standard CPR. Aviation, Space, and Environmental Med 1997; 68:415–20.

    CAS  Google Scholar 

  113. Bar-Joseph G, Safar P, Saito R, Stezoski SW, Alexander H. Monkey model of severe volume-controlled hemorrhagic shock with resuscitation to outcome. Resuscitation 1991 Aug; 22(1):27–43.

    Article  PubMed  CAS  Google Scholar 

  114. Vaagenes P, Cantadore R, Safar P, Moossy J, Rao G, Diven W, et al. Amelioration of brain damage by lidoflazine after prolonged ventricular fibrillation cardiac arrest in dogs. Crit Care Med 1984;12:846–55.

    Article  PubMed  CAS  Google Scholar 

  115. Vaagenes P, Safar P, Diven W, Moossy J, Rao G, Cantadore R, et al. Brain enzyme levels in CSF after cardiac arrest and resuscitation in dogs: markers of damage and predictors of outcome. J Cereb Blood Flow Metab 1988;8:262–75.

    Article  PubMed  CAS  Google Scholar 

  116. Vaagenes P, Safar P, Moossy J, Rao G, Diven W, Ravi C, et al. Asphyxiation versus ventricular fibrillation cardiac arrest in dogs. Differences in cerebral resuscitation effects — a preliminary study. Resuscitation 1997;35:41–52.

    Article  PubMed  CAS  Google Scholar 

  117. Kirimli B, Kampschulte S, Safar P. Resuscitation from cardiac arrest due to exsanguination. Surg Gynecol Obstet 1969;129:89–97.

    PubMed  CAS  Google Scholar 

  118. Tisherman SA, Safar P, Sterz F, Leonov Y, Oku K, Stezoski W. Exsanguination cardiac arrest in dogs: physiology of dying [abstract]. Ann Emerg Med 1989;18:460.

    Google Scholar 

  119. Tisherman SA, Safar P, Sterz F, Leonov Y, Oku K, Stezoski W. Exsanguination versus ventricular fibrillation cardiac arrest in dogs: comparison of neurologic outcome — preliminary data [abstract]. Ann Emerg Med 1989;18:460.

    Google Scholar 

  120. Safar P, Stezoski SW, Nemoto EM. Amelioration of brain damage after 12 minutes cardiac arrest in dogs. Arch Neurol 1976;33:91–5.

    PubMed  CAS  Google Scholar 

  121. Sterz F, Leonov Y, Safar P, Radovsky A, Tisherman S, Oku K. Hypertension with or without hemodilution after cardiac arrest in dogs. Stroke 1990;21:1178–84.

    Article  PubMed  CAS  Google Scholar 

  122. Nemoto EM, Erdmann NW, Strong E, Rao GRM, Moossy J. Regional brain PO2 after global ischemia in monkeys: evidence for regional differences in critical perfusion pressures. Stroke 1979;10(1):44–52.

    Article  PubMed  CAS  Google Scholar 

  123. Lin SR, O’Connor MJ, Fischer HW, King A. The effect of combined dextran and streptokinase on cerebral function and blood flow after cardiac arrest: an experimental study on the dog. Invest Radiol 1978 Nov-Dec;13:490–8.

    Article  PubMed  CAS  Google Scholar 

  124. Wise G, Sutter R, Burkholder J. The treatment of brain ischem ia with vasopressor drugs. Stroke 1972 Mar-Apr;3(2):135–40.

    Article  PubMed  CAS  Google Scholar 

  125. Muizelaar JP, Becker DP. Induced hypertension for the treatment of cerebral ischemia after subarachnoid hemorrhage. Direct effect on cerebral blood flow. Surg Neurol 1986;25:317–25.

    Article  PubMed  CAS  Google Scholar 

  126. Ito U, Ohno K, Yamaguchi T, Tomita H, Inaba Y, Kashima M. Transient appearance of “no reflow” phenomenon in Mongolian gerbils. Stroke 1980;11:517–21.

    Article  PubMed  CAS  Google Scholar 

  127. Ebmeyer U, Safar P, Radovsky A, Sharma C, Tanigawa K, Wang Y, Capone A, Xiao F, Bircher N, Stezoski W, Alexander H: Effective combination treatments for cerebral resuscitation from cardiac arrest in dogs. Exploratory studies [abstract]. Resuscitation 1994;28:S20.

    Article  Google Scholar 

  128. White BC, Gadzinski DS, Hoehner PJ, Krome C, Hoehnert, White JD. Effect of flunarizine on canine cerebral cortical blood flow and vascular resistance post cardiac arrest. Ann Emerg Med 1982;11:119–26.

    Article  PubMed  CAS  Google Scholar 

  129. Steen PA, Gisvold SE, Milde JH, Newberg LA, Scheithauer BW, Lanier WL, et al. Nimodipine improves outcome when given after complete cerebral ischemia in primates. Anesthesiology 1985;62:406–14.

    Article  PubMed  CAS  Google Scholar 

  130. Takasu A, Matushima S, Takino M, Okada Y. Effect of endothelin-1 antagonist, BQ 485, on cerebral oxygen metabolism after complete global cerebral ischemia in dogs. Resuscitation 1997;34:65–9.

    Article  PubMed  CAS  Google Scholar 

  131. Krep H, Brinker G, Schwindt W, Hossmann K-A. Endothelin type A-antagonist improves long-term neurological recovery after cardiac arrest in rats. Crit Care Med 2000;28:2873–80.

    Article  PubMed  CAS  Google Scholar 

  132. Safar P, Kochanek P. Cerebral blood flow promotion after prolonged cardiac arrest. Editorial. Crit Care Med 2000;28:3104–6.

    Article  PubMed  CAS  Google Scholar 

  133. Spivey WH, Abramson NS, Safar P, Sutton-Tyrell K, Schoffstaff JM, BRCT II Study Group. Correlation of blood pressure with mortality and neurologic recovery in comatose postresuscitation patients [abstract]. Ann Emerg Med 1991;20:453.

    Google Scholar 

  134. Martin DR, Persse D, Brown CG, Jastremski M, Cummins RO, Pepe PE, et al. Relation between initial post-resuscitation systolic blood pressure and neurologic outcome following cardiac arrest [abstract]. Ann Emerg Med 1993;22:206.

    Article  Google Scholar 

  135. Sasser HC, Safar P, Kelsey SF, Ricci EM, Sutton-Tyrrell KC, Wisniewski SR. Arterial hypertension after cardiac arrest is associated with good cerebral outcome in patients [abstract]. Crit Care Med 1999;27(l2):A29.

    Article  Google Scholar 

  136. Mullner M, Sterz F, Binder M, Hellwagner K, Meron G, Herkner H, et al. Arterial blood pres sure after human cardiac arrest and neurologic recovery. Stroke 1996;27(1):59–62.

    Article  PubMed  CAS  Google Scholar 

  137. Lee SK, Vaagenes D, Safar P, Stezoski SW, Scanlon M. Effect of cardiac arrest time on the cortical cerebral blood flow during subsequent standard external cardiopulmonary resuscitation in rabbits. Resuscitation 1989;17:105–117.

    Article  PubMed  CAS  Google Scholar 

  138. Ishige N, Pitts LH, Berry I, Carlson SG, Nishimura MC, Moseley ME, et al. The effect of hypoxia on traumatic head injury in rats: alterations in neurologic function, brain edema, and cerebral blood flow. J Cereb Blood Flow Metab 1987;7:759–67.

    Article  PubMed  CAS  Google Scholar 

  139. Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury; a randomized clinical trial. J Neurosurg 1991;75:731–9.

    Article  PubMed  CAS  Google Scholar 

  140. Liu Y, Rosenthal RE, Haywood Y, Miljkovic-Lolic M, Vanderhoek JY, Fiskum G. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke 1998;29:1679–86.

    Article  PubMed  CAS  Google Scholar 

  141. Zwemer CF, Whitesall SE, D’Alecy LG. Cardiopulmonary-cerebral resuscitation with 100% oxygen exacerbates neurological dysfunction following nine minutes of normothermic cardiac arrest in dogs. Resuscitation 1994;27:159–70.

    Article  PubMed  CAS  Google Scholar 

  142. Zwemer CF, Whitesall SE, D’Alecy LG. Hypoxic cardiopulmonary-cerebral resuscitation fails to improve neurologic outcome following cardiac arrest in dogs. Resuscitation 1995;29:225–36.

    Article  PubMed  CAS  Google Scholar 

  143. Smith AL, Hoff JT, Nielson SL, Larson CP. Barbiturate protection in acute focal cerebral ischemia. Stroke 1974;5(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  144. Michenfelder JD, et al: Cerebral protection by barbiturate anesthesia. Use after middle cerebral artery occlusion in Java monkeys. Arch Neurol 1976;33:345.

    PubMed  CAS  Google Scholar 

  145. Goldstein A Jr, Wells BA, Keats AS. Increased tolerance to cerebral anoxia by pentobarbital. Arch Int Pharmacodyn Ther 1966;161:138–43.

    PubMed  CAS  Google Scholar 

  146. Yatsu FM, Diamond I, Graziano C, Lindquist P. Experimental brain ischemia: protection from irreversible damage with a rapid-acting barbiturate (methohexital). Stroke 1972;3:726–32.

    Article  PubMed  CAS  Google Scholar 

  147. Shapiro HM. Intracranial hypertension. Therapeutic and anesthetic considerations. Anesthesiology 1975;43:445–71.

    Article  PubMed  CAS  Google Scholar 

  148. Todd MM, Dunlop BJ, Shapiro HM, Chadwick HS, Powell HC. Ventricular fibrillation in the cat: a model for global cerebral ischemia. Stroke 1981;12:808–15.

    Article  PubMed  CAS  Google Scholar 

  149. Demopoulos HB, Flamm ES, Pietronigro DD, Seligman ML. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand 1980;492(suppl):91–119.

    CAS  Google Scholar 

  150. Bleyaert AL, Nemoto EM, Safar P, Stezoski SW, Mickell JJ, Moossy J, et al: Thiopental amelioration of brain damage after global ischemia in monkeys. Anesthesiology 1978;49:390–8.

    Article  PubMed  CAS  Google Scholar 

  151. Gisvold SE, Safar P, Hendrickx HHL, Rao G, Moossy J, Alexander H. Thiopental treatment after global brain ischemia in pigtail monkeys. Anesthesiology 1984;60:88–96.

    Article  PubMed  CAS  Google Scholar 

  152. Breivik H, Safar P, Sands P, Fabritius R, Lind B, Lust P, et al. Clinical feasibility trials of barbiturate therapy after cardiac arrest. Crit Care Med 1978;6:228–44.

    Article  PubMed  CAS  Google Scholar 

  153. Brain Resuscitation Clinical Trial I Study Group. Steering Committee: Kelsey SF, Abramson NS, Detre KM, Monroe J, Reinmuth O, Safar P (P.I.), Snyder JV. Investigators: Mullie A, et al.: A randomized clinical study of cardiopulmonary-cerebral resuscitation: Design, methods and patient characteristics. Am J Emerg Med 1986;4:72–86.

    Article  Google Scholar 

  154. Ebmeyer W, Safar P, Radovsky A, Xiao F, Capone A, Tanigawa K, et al. Thiopental combination treatments for cerebral resuscitation after prolonged cardiac arrest in dogs. Exploratory outcome study. Resuscitation 2000;45;119–131.

    Article  PubMed  CAS  Google Scholar 

  155. Brain Resuscitation Clinical Trial II Study Group (Safar P, P.I.). A randomized clinical study of a calcium-entry blocker (lidoflazine) in the treatment of comatose survivors of cardiac arrest. N Engl J Med 1991;324:1225–31.

    Article  Google Scholar 

  156. Abramson N, Kelsey S, Safar P, Sutton-Tyrrell K. Simpson’s paradox and clinical trials:What you find is not necessarily what you prove. Ann Emerg Med 1992;21:1480–2.

    Article  PubMed  CAS  Google Scholar 

  157. Roine RO, Kaste M, Kinnamen A, Nikki P, Sarna S, Kajaste S. Nimodipine after resuscitation from out-of-hospital ventricular fibrillation: a placebo-controlled, double-blind randomized trial. JAMA 1990;264:3171–7.

    Article  PubMed  CAS  Google Scholar 

  158. Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J. Focal cerebral ischemia in the cat: treatment with glutamate ant agonist MK-801 after induction of ischemia. J Cereb Blood Flow Metab 1988;8:757–62.

    Article  PubMed  CAS  Google Scholar 

  159. Gill R, Foster AC, Woodruff GN. Systemic administration of MK-801 protects against ischemia induced hippocampal neuro-degeneration in the gerbil. J Neurosci 1987;7:3343–9.

    PubMed  CAS  Google Scholar 

  160. Sterz F, Leonov Y, Safar P, Radovsky A, Stezoski W, Reich H, et al. Effect of excitatory amino acid receptor blocker MK-801 on overall, neurologic, and morphologic outcome after prolonged cardiac arrest in dogs. Anesthesiology 1989;71:907–18.

    Article  PubMed  CAS  Google Scholar 

  161. Buchan AM, Li H, Cho S, Pulsinelli WA. Blockade of the AMPA receptor prevents CA1 hippocampal injury following severe but transient forebrain ischemia in adultrats. Neurosci Lett 1991 Nov 11;132(2):255–8.

    Article  PubMed  CAS  Google Scholar 

  162. Buchan AM, Bruederlin B, Heinicke E, Li H. Failure of the lipid peroxidation inhibitor, U74006F, to prevent postischemic selective neuronal injury. J Cereb Blood Flow Metab 1992;12:250–6.

    Article  PubMed  CAS  Google Scholar 

  163. Buchan AM, Gertler SZ, Li H, Xue D, Huang ZG, Chaundy KE, et al. A selective N-type Ca2+-channel blocker prevent s CA1 injury 24 h following severe forebrain ischemia and reduce s infarction following focal ischemia. J Cereb Blood Flow Metab 1994;14:903–10.

    Article  PubMed  CAS  Google Scholar 

  164. Xiao F, Sim K, Safar P, Radovsky A, Capone A, Ebmeyer U, et al. Beneficial effects of neuronspecific calcium entry blocker SNX-111 on cerebral outcome after forebrain ischemia in rats, but not after ventricular fibrillation (VF) cardiac arrest (CA) in dogs [abstract). Resuscitation 1994;28:S36.

    Article  Google Scholar 

  165. Toung TK, Traystman RJ, Hurn PD. Estrogen-mediated neuroprotection after experimental stroke in male rats. Stroke 1998;29:1666–70.

    Article  PubMed  CAS  Google Scholar 

  166. Sieber FE, Traystman RJ. Special issues,glucose and the brain. Crit Care Med 1991;20:104–14.

    Article  Google Scholar 

  167. Abramson NS, Safar P, Sutton-Tyrrell, Craig MT, for the BRCT III Study Group: A randomized clinical trial of escalating doses of high dose epinephrine during cardiac resuscitation [abstract]. Crit Care Med 1995;23:A178.

    Google Scholar 

  168. Brain Resuscitation Clinical Trial I Study Group: Steering Committee: Abramson NS, Safar P, Detre KM, Kelsey SF, Monroe J, Reinmuth O, et al. Neurologic recovery after cardiac arrest: effect of duration of ischemia. Crit Care Med 1985;13:930–1.

    Article  PubMed  Google Scholar 

  169. Rogove HJ, Safar P, Sutton-Tyrrell K, Abramson NS. Old age does not negate good clinical trials. Crit Care Med 1995;23:18–25.

    Article  PubMed  CAS  Google Scholar 

  170. Edgren E, Hedstrand U, Kelsey S, Sutton-Tyrrell K, Safar P. Assessment of neurological prognosis in comatose survivors of cardiac arrest. Lancet 1994;343:1055–9.

    Article  PubMed  CAS  Google Scholar 

  171. Sasser HC, Safar P, BRCT Study Group: Clinical signs early after CPR predict neurologic outcome [abstract]. Crit Care Med 1999;27(12):A30.

    Article  Google Scholar 

  172. Abramson NS, Meisel A, Safar P. Deferred consent. A new approach for resuscitation research on comatose patients. JAMA 1986;255:2466–71.

    Article  PubMed  CAS  Google Scholar 

  173. Vaagenes P, Mullie M, Fodstad DT, Abramson NA, Safar P, and the Brain Resuscitation Clinical Trial I Study Group. The use of cytosolic enzyme increase in cerebrospinal fluid of patients resuscitated after cardiac arrest. Am J Emerg Med 1994;12:621–4.

    Article  PubMed  CAS  Google Scholar 

  174. Mullie A, Lust P, Penninckx J, Vanhove L, Vandevelde K, Vanhoonacker G, et al. Monitoring of cerebro-spinal fluid enzyme levels in postischemic encephalopathy after cardiac arrest. Crit Care Med 1981;9:399–400.

    Article  PubMed  CAS  Google Scholar 

  175. Edgren E, Terent A, Hedstrand U, Ronquist G. Cerebral spinal fluid markers in relation to outcome in patients with global cerebral ischemia. Crit Care Med 1983;11:4–6.

    Article  PubMed  CAS  Google Scholar 

  176. Bigelow WG, Lindsay WK, Greenwood WE. Hypothermia: its possible role in cardiac surgery. An investigation of factors governing survival in dogs at low body temperature. Ann Surg 1950;132:849–66.

    Article  PubMed  CAS  Google Scholar 

  177. Rosomoff HL, Holaday BA. Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am J Physiol 1954;179:85–8.

    PubMed  CAS  Google Scholar 

  178. Rosomoff HL. Hypothermia and cerebral vascular lesions. I. Experimental interruption of the middle cerebral artery during hypothermia. J Neurosurg 1956;13:332–43.

    Google Scholar 

  179. Rosomoff HL. Protective effects of hypothermia against pathological processes of the nervous system. Ann NY Acad Sci 1959;80:475–86.

    Article  PubMed  CAS  Google Scholar 

  180. Rosomoff HL, Shulman K, Raynor R, et al. Experimental brain injury and delayed hypothermia. Surg Gynecol Obstet 1960;110:27–32.

    PubMed  CAS  Google Scholar 

  181. Dripps RD, editor. The Physiology of Induced Hypothermia. Washington (DC): National Academy of Sciences; 1956.

    Google Scholar 

  182. Rosomoff HL, Safar P. Management of the comatose patient. In: Safar P, editor. Respiratory therapy. Philadelphia: FA Davis Co; 1965. p. 244–58.

    Google Scholar 

  183. White RJ. Cerebral hypothermia and circulatory arrest. Review and commentator. Mayo Clin Proc 1978;53:450–8.

    PubMed  CAS  Google Scholar 

  184. White RJ, Brown HW, Albin MS, Verdura J. Rapid selective brain-cooling using head immersion and naso-oral perfusion in dogs. Resuscitation 1983;10:189–91.

    Article  PubMed  CAS  Google Scholar 

  185. Wolfson SK, Selker RG. Carotid perfusion hypothermia for brain surgery using cardiac arrest without bypass. J Surg Res 1973;14:449–58.

    Article  PubMed  Google Scholar 

  186. White RJ, Albin MS, Verdura J, Locke GE. Prolonged whole brain refrigeration with electrical and metabolic recovery. Nature 1966;209(30):1320–2.

    Article  PubMed  CAS  Google Scholar 

  187. Albin MS. Resuscitation of spinal cord. Crit Care Med 1978;5:270–6.

    Article  Google Scholar 

  188. Ravitch MM, Lane R, Safar P, Steichen F, Knowles P. Lightning stroke. Recovery following cardiac massage and prolonged artificial respiration. N Engl J Med 1961;264:36–8.

    Article  PubMed  CAS  Google Scholar 

  189. Casey LC, Ballantyne HK, Fletcher JR, Chernow B, Lake CR. Development of a primate model of exposure hypothermia. Adv Shock Res 1983;9:233–7.

    PubMed  CAS  Google Scholar 

  190. Tisherman SA, Rodriguez A, Safar P. Therapeutic hypothermia in traumatology. Chapter in Surgery Clinics of North America 1999;79:1269–89.

    Article  CAS  Google Scholar 

  191. Bellamy R, Safar P, Tisherman SA, Basford R, Bruttig SP, Capone A, et al. Suspended animation for delayed resuscitation. Crit Care Med 1996;24(2 Suppl):S24–47.

    PubMed  CAS  Google Scholar 

  192. Hochachka PW, Lutz PL, Sick T, et al (eds): Surviving hypoxia. Mechanisms of control and adaptation. Boca Raton: CRC Press, Inc; 1993.

    Google Scholar 

  193. Wolfe KB. Effect of hypothermia in cerebral damage resulting from cardiac arrest. Amer J Cardiol 1960;6:809–12.

    Article  PubMed  CAS  Google Scholar 

  194. Zimmerman JM, Spencer FC. The influence of hypothermia on cerebral injury resulting from circulatory occlusion. Surg Forum 1958;9:216–8.

    PubMed  CAS  Google Scholar 

  195. Benson DW, Williams GR, Spencer FC, et al: The use of hypothermia after cardiac arrest. Anes Analg 1958;38:423–8.

    Google Scholar 

  196. Gisvold SE, Safar P, Rao G, Moossy J, Kelsey S, Alexander H. Multifaceted therapy after global brain ischemia in monkeys. Stroke 1984;15:803–12.

    Article  PubMed  CAS  Google Scholar 

  197. Brader E, Jehle Protective head cooling during cardiac arrest in dogs [abstract]. Ann Emerg Med 1985;14:510.

    Article  Google Scholar 

  198. Leonov Y, Sterz F, Safar P, Radovsky A. Moderate hypothermia after cardiac arrest of 17 min in dogs: effect on cerebral and cardiac outcome. A preliminary study. Stroke 1990;21:1600–6.

    Article  PubMed  CAS  Google Scholar 

  199. Safar P, Klain M, Tisherman S. Selective brain cooling after cardiac arrest (Editorial). Crit Care Med 1996;24:911–4.

    Article  PubMed  CAS  Google Scholar 

  200. Xiao F, Safar P, Alexander H. Peritoneal cooling for mild cerebral hypothermia after cardiac arrest in dogs. Resuscitation 1995;30:51–9.

    Article  PubMed  CAS  Google Scholar 

  201. Safar P, Grenvik A, Abramson N, Bircher N, editors. International resuscitation research symposium on the reversibility of clinical death. Crit Care Med 1988;16:919–1086.

    Google Scholar 

  202. Hossmann K-A. Resuscitation potentials after prolonged global ischemia in cats. Crit Care Med 1988;16:964–78.

    Article  PubMed  CAS  Google Scholar 

  203. Leonov Y, Sterz F, Safar P, Radovsky A, Oku K, Tisherman S, et al. Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs. J Cereb Blood Flow Metab 1990;10:57–70.

    Article  PubMed  CAS  Google Scholar 

  204. Sterz F, Safar P, Tisherman S, Radovsky A, Kuboyama K, Oku K. Mild hypothermic cardiopulmonary resuscitation improves outcome after prolonged cardiac arrest in dogs. Crit Care Med 1991;19:379–89.

    Article  PubMed  CAS  Google Scholar 

  205. Weinrauch V, Safar P, Tisherman S, Kuboyama K, Radovsky A. Beneficial effect of mild hypothermia and detrimental effect of deep hypothermia after cardiac arrest in dogs. Stroke 1992;23:1454–62.

    Article  PubMed  CAS  Google Scholar 

  206. Kuboyama K, Safar P, Radovsky A, Tisherman SA, Stezoski SW, Alexander H. Delay in cooling negates the beneficial effect of mild resuscitative cerebra l hypothermia after cardiac arrest in dogs: a prospective, randomized, controlled study. Crit Care Med 1993;21:1348–58.

    Article  PubMed  CAS  Google Scholar 

  207. Safar P, Xiao F, Radovsky A, Tanigawa K, Ebmeyer U, Bircher N, et al. Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion. Stroke 1996;27:105–13.

    Article  PubMed  CAS  Google Scholar 

  208. Busto R, Deitrich WD, Globus MY, Valdes I, Scheinberg P, Ginsberg MD. Small differences in intra-ischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metabol 1987;7:729–38.

    Article  CAS  Google Scholar 

  209. Busto R, Dietrich WD, Globus MY, Ginsberg MD. Postischemic moderate hypothermia inhibits CA1 hippocampal ischemia neuronal injury. Neurosci Lett 1989;101:299–304.

    Article  PubMed  CAS  Google Scholar 

  210. Boris-Moller F, Smith ML, Siesjo BK. Effect of hypothermia on ischemic brain damage: a comparison between preischemic and postischemic cooling. Neurosci Res Comm 1989;5:87–94.

    Google Scholar 

  211. Chopp M, Chen H, Dereski MO, Garcia JH. Mild hypothermic intervention after graded ischemic stress in rats. Stroke 1991;22:37–43.

    Article  PubMed  CAS  Google Scholar 

  212. Nemoto EM, Klementavicius R, Melick JA, Yonas H. Effect of mild hypothermia on active and basal cerebral oxygen metabolism and blood flow. Adv Exp Med Biol 1994;361:469–73.

    Article  PubMed  CAS  Google Scholar 

  213. Astrup J, Rehncrona S, Siesjo BK. The increase in extracellular potassium concentration in the ischemic brain in relation to the preischemic functional activity and cerebral metabolic rate. Brain Res 1980;199:61–74.

    Article  Google Scholar 

  214. Chopp M, Knight R, Tidwell CD, Helpern JA, Brown E, Welch KM. The metabolic effects of mild hypothermia on global cerebral ischemia and recirculation in the cat: comparison to normothermia and hyperthermia. J Cereb Blood Flow Metab 1989:9:141–8.

    Article  PubMed  CAS  Google Scholar 

  215. Busto R, Globus MY, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat bra in. Stroke 1989;20:904–10.

    Article  PubMed  CAS  Google Scholar 

  216. Dempsey RJ, Combs DJ, Maley ME, Cowen DE, Roy MW, Donaldson DL, et al. Moderate hypothermia reduces post ischemic edema development and leukotriene production. Neurosurgery 1987;21:177–81.

    Article  PubMed  CAS  Google Scholar 

  217. Cardell M, Boris-Moller F, Wieloch T. Hypothermia prevents the ischemia-induced translocation and inhibition of protein kinase C in the rat striatum. J Neurochem 1991 Nov;57(5):1814–7.

    Article  PubMed  CAS  Google Scholar 

  218. Pomeranz S, Safar P, Radovsky A, Tisherman SA, Alexander H, Stezoski W. The effect of resuscitative moderate hypothermia following epidural brain compression on cerebral damage in a canine outcome model. J Neurosurg 1993;79:241–51.

    Article  PubMed  CAS  Google Scholar 

  219. Ebmeyer U, Safar P, Radovsky A, Obrist W, Alexander H, Pomeranz S. Moderate hypothermia for 48 hours after temporary epidural brain compression injury in a canine outcome model. J Neurotrauma 1998;15:323–36.

    Article  PubMed  CAS  Google Scholar 

  220. Baiping L, Xiujuan T, Hongwei C, et al: Effect of moderate hypothermia on lipid peroxidation in canine brain tissue after cardiac arrest and resuscitation. Stroke 1994;25:147–152.

    Article  Google Scholar 

  221. Whalen MJ, Carlos TM, Clark RS, Marion DW, DeKosky ST, Heineman S, et al. The effect of brain temperature on acute inflammation after traumatic brain injury in rats. J Neurotraurna 1997;14:561–72.

    Article  CAS  Google Scholar 

  222. Xiao F, Safar P, Katz L, Radovsky A, Ebmeyer U, Sim KM, Neumar R. Mild protective and resuscitative cerebral hypothermia improves outcome after asphyxial cardiac arrest in rats [abstract]. Resuscitation 1994;28:S21.

    Article  Google Scholar 

  223. Coimbra C, Wieloch T. Hypotherm ia ameliorates neuronal survival when induced 2 hours after ischemia in the rat. Acta Physio Scand 1992;146:543–4.

    Article  CAS  Google Scholar 

  224. Coimbra C, Boris MF, Drake M, Wieloch T. Diminished neuronal damage in the rat brain by late treatment with the antipyretic drug dipyrone or cooling following cerebral ischemia. Acta Neuropathol Berl 1996;92:447–453.

    Article  PubMed  CAS  Google Scholar 

  225. Hickey RW, Ferimer HN, Alexander HN, Garman RH, Callaway CL, Safar P, et al. Cerebral resuscitation with prolonged, delayed spontaneous hypothermia after asphyxial cardiac arrest in rats [abstract]. Soc Neurosci 1998;24:1506.

    Google Scholar 

  226. Dietrich WD, Busto R, Alonso O, Globus MY, Ginsberg MD. Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab 1993;13:541–9.

    Article  PubMed  CAS  Google Scholar 

  227. Colbourne F, Li H, Buchan AM. Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats. J Cereb Blood Flow Metab 1999;19:724–49.

    Google Scholar 

  228. Bernard SA, Jones BM, Horne MK. Clinical trial of induced hypothermia in comatose survivors of out-of-hospital cardiac arrest. Ann Emerg Med 1997;30(2):146–53.

    Article  PubMed  CAS  Google Scholar 

  229. Yamashita C, Nakagiri K, Yamashita T, Matsuda H, Wakiyama H, Yoshida M, Ataka K, Okada M. Mild hypothermia for temporary brain ischemia during cardiopulmonary support systems: report of three cases. Surg Today 1999;29(2):182–5.

    Article  PubMed  CAS  Google Scholar 

  230. Zeiner A, Holzer M, Sterz F, Behringer W, Schorkhuber W, Mullner M, et al. For the Hypothermia after Cardiac Arrest (HACA) Study group: Mild Resuscitative Hypothermia to improve neurological outcome after cardiac arrest: a clinical feasibility trial. Stroke 2000;31:86–94.

    Article  PubMed  CAS  Google Scholar 

  231. Dietrich WD, Busto R, Valdes I, Loor Y. Effects of normothermic versus mild hyperthermic forebrain ischemia in rats. Stroke 1990;21:1318–25.

    Article  PubMed  CAS  Google Scholar 

  232. Marion DW, Penrod LE, Kelsey SF, Obrist WD, Kochanek PM, Palmer AM, et al. Treatment of traumatic brain injury with moderate hypothermia. New Engl J Med 1997; 336:540–6.

    Article  PubMed  CAS  Google Scholar 

  233. Clifton GL, Miller ER, Choi SC, et al: Lack of effect of induction of hyperthermia after acute brain injury. N Engl J Med 2001;344:556–563.

    Article  PubMed  CAS  Google Scholar 

  234. Safar P, Kochanek PM: Resuscitative hypothermia after acute brain injury. Letter to Editor. In press, N Engl J Med 2001.

    Google Scholar 

  235. Rupp SM, Severinghaus JW. Hypothermia. In: Miller RD, editor. Anesthesia. 2nd ed. New York: Churchill Livingstone; 1986. p. 1995–2022.

    Google Scholar 

  236. Capone AC, Safar P, Stezoski W, Tisherman S, Peitzman AB. Improved outcome with fluid restriction in treatment of uncontrolled hemorrhagic shock. J Am Coli Surg 1995; 180:49–56.

    CAS  Google Scholar 

  237. Crippen D, Safar P, Porter L, Zona J. Improved survival of hemorrhagic shock with oxygen and hypothermia in rats. Resuscitation 1991;21:271–81.

    Article  PubMed  CAS  Google Scholar 

  238. Kim SH, Stezoski SW, Safar P, Capone A, Tisherman S. Hypothermia and minimal fluid resuscitation increase survival after uncontrolled hemorrhagic shock in rats. J Trauma 1997;42:213–22.

    Article  PubMed  CAS  Google Scholar 

  239. Takasu A, Carrillo P, Stezoski SW, Safar P, Tisherman SA. Mild or moderate hypothermia, but not increased oxygen breathing, prolongs survival during lethal uncontrolled hemorrhagic shock in rats with monitoring of visceral dysoxia. Crit Care Med 1999;27:1557–64.

    Article  PubMed  CAS  Google Scholar 

  240. Prueckner S, Safar P, Kentner R, Stezoski J, Tisherman SA. Mild hypothermia increases survival from severe pressure controlled hemorrhagic shock in rats [abstract]. J. Trauma 1999;47:1172.

    Google Scholar 

  241. Carrillo P, Takasu A, Safar P, Tisherman S, Stezoski SW, Stolz G, et al. Prolonged severe hemorrhagic shock and resuscitation in rats does not cause subtle brain damage. J Trauma 1998;45:239–49.

    Article  PubMed  CAS  Google Scholar 

  242. Villar J, Slutsky AS. Effects of induced hypothermia in patients with septic adult respiratory distress syndrome. Resuscitation 1993;26:183–92.

    Article  PubMed  CAS  Google Scholar 

  243. Safar P, Tisherman S, Behringer W, Capone A, Prueckner S, Radovsky A, et al. Suspended animation for resuscitation from prolonged cardiac arrest. CPCR. Crit Care Med. 2000; 28:N214–N218 (Suppl.)

    Article  PubMed  CAS  Google Scholar 

  244. Rhee PM, Acosta J, Bridgeman A, Wang D, Jordan M, Rich N. Survival after emergency department thoracotomy: review of published data from the past 25 years. J Am Coll Surg 2000;190:288–98.

    Article  PubMed  CAS  Google Scholar 

  245. Tisherman SA, Safar P, Radovsky A, Peitzman A, Sterz F, Kuboyama K. Therapeutic deep hypothermic circulatory arrest in dogs: a resuscitation modality for hemorrhagic shock with ‘irreparable’ injury. J Trauma 1990;30:836–47.

    Article  PubMed  CAS  Google Scholar 

  246. Tisherman SA, Safar P, Radovsky A, Peitzman A, Marrone G, Kuboyama K, et al. Profound hypothermia (<10°C) compared with deep hypothermia (l5°C) improves neurologic outcome in dogs after two hours’ circulatory arrest induced to enable resuscitative surgery. J Trauma 1991;31:1051–62.

    PubMed  CAS  Google Scholar 

  247. Tisherman S, Safar P, Radovsky A, Kuboyama K, Marrone G, Peitzman A. Heparin-bonded cardiopulmonary bypass without systemic anticoagulation does not diminish protection in hypothermic circulatory arrest after hemorrhagic shock in dogs [abstract]. Anesthesiology 1992;77:A285.

    Article  Google Scholar 

  248. Tisherman SA, Safar P, Radovsky, Marrone G, Peitzman A, Kuboyama K. Profound hypothermia does, and an organ preservation solution does not, improve neurologic outcome after therapeutic circulatory arrest of 2 h in dogs [abstract]. Crit Care Med 1991;19:S89.

    Article  Google Scholar 

  249. Tisherman S, Safar P, Radovsky A.“Suspended animation” research for otherwise infeasible resuscitative traumatologic surgery [abstract]. Prehosp Disaster Med 1993;8:S131.

    Google Scholar 

  250. Capone A, Safar P, Radovsky A, Wang Y, Peitzman A, Tisherman SA. Complete recovery after normothermic hemorrhagic shock and profound hypothermic circulatory arrest of 60 minutes in dogs. J Trauma 1996;40:388–94.

    Article  PubMed  CAS  Google Scholar 

  251. Rush, BF, Wilder RJ, Fishbein R, et al. Effects of total circulatory standstill in profound hypothermia. Surgery 1962;50:40-.

    Google Scholar 

  252. Popovic V, Popovic P. Survival of hypothermic dogs after 2-h circulatory arrest. Am J Physiol 1985; 248(3 Pt 2):R308–11.

    PubMed  CAS  Google Scholar 

  253. Livesay JJ, Cooley DA, Reul GJ, Walker WE, Frazier OH, Duncan JM. Resection of aortic arch aneurysms: a comparison of hypothermia techniques in 60 patients. Ann Thorac Surg 1983;36(1):19–28.

    Article  PubMed  CAS  Google Scholar 

  254. Woods RJ, Prueckner S, Safar P, Radovsky A, Takasu A, Stezoski SW, et al. Hypothermic aortic arch flush for preservation during exsanguination cardiac arrest of 15 minutes in dogs. J Trauma 1999:47:1028–38.

    Article  PubMed  CAS  Google Scholar 

  255. Behringer W, Prueckner S, Safar P, Radovsky A, Kentner, Stezoski SW, et al. Rapid induction of mild cerebral hypothermia by cold aortic flush achieves normal recovery in a dog outcome model with 20-minutes exsanguination cardiac arrest. Acad Emerg Med. In press 2000.

    Google Scholar 

  256. Behringer W, Prueckner S, Kentner R, Tisherman SA, Radovsky A, Clark R, et al. Rapid hypothermic aortic flush can achieve survival without brain damage after 30 min cardiac arrest in dogs. Anesthesiology. In press 2000.

    Google Scholar 

  257. Behringer W, Safar P, Kentner R, Wu X, Radovsky A, Stezoski SW, et al. Cold aortic flush can allow normal recovery after exsanguination cardiac arrest (CA) of 60 min in dogs [abstract]. Submitted to EAST meeting 2001.

    Google Scholar 

  258. Taylor MJ, Bailes JE, Elrifai AM, Shih SR, Teeple E, Leavitt ML, et al. A new solution for life without blood: asanguinous low flow perfusion of a whole-body perfusate during 3 hours of cardiac arrest and profound hypothermia. Circulation 1995;91:431–4.

    PubMed  CAS  Google Scholar 

  259. Behringer W, Prueckner S, Kentner R, Safar P, Radovsky A, Stezoski W, et al. Exploration of pharmacologic aortic arch flush strategies for rapid induction of suspended animation (SA) (cerebral preservation) during exsanguination cardiac arrest (ExCA) of 20 min in dogs [abstract]. Crit Care Med 1999;27(12):A65.

    Article  Google Scholar 

  260. Behringer W, Wu X, Radovsky A, Tisherman SA, Safar P. Tempol by aortic arch flush (AAF) for cerebral preservation during 20 min exsanguination cardiac arrest (CA) in dogs. Exploratory experiments [abstract]. Anesthesiology. In press 2000.

    Google Scholar 

  261. Safar P. Resuscitation medicine research: quo vadis. Ann Emerg Med 1996;27:542–52.

    Article  PubMed  CAS  Google Scholar 

  262. Safar P. On the future of reanimatology. Acad Emerg Med 2000;7:75–89.

    Article  PubMed  CAS  Google Scholar 

  263. J. Safar P. The physician’s responsibility towards hopelessly critically ill patients. Ethical dilemmas in resuscitation medicine. Acta Anaesth Scand 1991;35 (Suppl 96):147–9.

    Google Scholar 

  264. Grenvik A, Powner DJ, Snyder JV, Jastremski MS, Babcock RA, Loughhead MG. Cessation of therapy in terminal illness and brain death. Crit Care Med 1978;6:284–9J.

    Article  PubMed  CAS  Google Scholar 

  265. Wanzer SH, Adelstein SJ, Cranford RE, Federman DD, Hook ED, Moertel CG, et al. The physician’s responsibility toward hopelessly ill patients. N Engl J Med 1984;310:955–9.

    Article  PubMed  CAS  Google Scholar 

  266. Wanzer SH, Federman DD, Adelstein SJ, Cassel CK, Cassem EH, Cranford RE, et al. The physician’s responsibility toward hopelessly ill patients. A second look. N Engl J Med 1989;320:844–9.

    Article  PubMed  CAS  Google Scholar 

  267. Safar P, Winter P. Helping to die. Crit Care Med 1990;18:788–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Safar, P. (2003). Cerebral Resuscitation from Temporary Complete Global Brain Ischemia. In: Cerebral Blood Flow. Update in Intensive Care Medicine, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56036-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56036-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42684-4

  • Online ISBN: 978-3-642-56036-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics