Skip to main content

Coupling and Compartmentation of Cerebral Blood Flow and Metabolism

  • Chapter
  • 177 Accesses

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 37))

Abstract

Is there a link between brain function and brain energy metabolism? If there is a link, is it important to the understanding of brain function and its organization? To answer these general questions, we must understand at least four relationships which reasonable considerations suggest underlie the link between brain function and brain energy metaboHsm. These relationships link:

  • The function of the brain to the work carried out in the brain (the function-work couple),

  • the work of the brain to the cells which carry out the work (cellular compartmentation),

  • the cells which carry out the work to the relative and absolute magnitudes of oxidative and non-oxidative energy metabolism of brain (work-metabolism couple), and

  • the energy metabolism of the brain to its blood supply (metabolism-flow couple).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andriezen WL (1893)The neuroglia elements in the human brain. Brit Med J ii: 227–230

    Article  Google Scholar 

  • Ayata C, Ma J, Meng W, Huang P, Moskowitz MA (1996) L-NA-sensitive rCBF augmentation during vibrissal stimulation in type III nitric oxide synthase mutant mice. J Cereb Blood Flow Metab 16: 539–541

    Article  PubMed  CAS  Google Scholar 

  • van den Berg CJ, Bruntink R (1983) Glucose oxidation in the brain during seizures: Experiments with labeled glucose and deoxyglucose. In: Hertz L, Kvamme E, McGeer EG, Schousboe A (eds) Glutamine, Glutamate and GABA in the Central Nervous System, Alan R Liss, New York, pp. 619–624.

    Google Scholar 

  • Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 16:1079–1089.

    Article  PubMed  CAS  Google Scholar 

  • Brandt RB, Laux JE, Spainhour SE, Kline ES (1987) Lactate dehydrogenase in rat mitochondria. Arch Biochem Biophys 259: 412–422.

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW; Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677.

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW; Klatzo I; Olsson Y; Reese TS (1970) The blood-brain barrier to proteins under normal and pathological conditions. J Neurol Sei 110: 215–239.

    Article  Google Scholar 

  • Broer S; Rahman B; Pellegri G; Pellerin L; Martin JL; Verleysdonk S; Hamprecht B; Magistretti PJ (1997) Comparison of lactate transport in astrogUal cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem 272: 30096–30102.

    Article  PubMed  CAS  Google Scholar 

  • Caesar K, Akgoren N, Mathiesen C, Lauritzen M (1999) Modification of activity-dependent increases in cerebellar blood flow by extracellular potassium in anaesthetized rats. J Physiol (Lond) 520: 281–292.

    Article  CAS  Google Scholar 

  • Cholet N, Seylaz J, Lacombe P, Bonvento G (1997) Local uncoupling of the cerebrovascular and metaboHc responses to somatosensory stimulation after neuronal nitric oxide synthase inhibition. J Cereb Blood Flow Metab 17: 1191–1201.

    Article  PubMed  CAS  Google Scholar 

  • Cholet N, Pellerin L, Welker E, Lacombe P, Seylaz J, Magistretti P, Bonvento G (2001) Local injection of antisense oligonucleotides targeted to the glial glutamate transporter GLAST decreases the metabolic response to somatosensory activation. J Cereb Blood Flow Metab 21:404–412

    Article  PubMed  CAS  Google Scholar 

  • Connett RJ, Gayeski TE, Honig CR (1985) Energy sources in fully aerobic rest-work transitions: A new role for glycolysis. Am J Physiol 248: H922–H929.

    PubMed  CAS  Google Scholar 

  • Cremer JE (1976) The influence of liver-bypass on transport and compartmentation in vivo. Adv Exp Med Biol 69: 95–102.

    PubMed  CAS  Google Scholar 

  • Cremer JE, Cunningham VJ, Pardridge WM, Braun LD, Oldendorf WH (1979) Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J Neurochem 33: 439–446.

    Article  PubMed  CAS  Google Scholar 

  • Diemer NH, Benveniste H, Gjedde A (1985) In vivo cell membrane permeability to deoxyglucose in rat brain. Acta Neurol Scand 72: 87.

    Google Scholar 

  • Drewes L (1999) Transport of brain fuels, glucose and lactate. In: Paulson OB, Knudsen GM, Moos T (eds.) Brain Barrier Systems, Alfred Benzon Symposium 45, Munksgaard, Copenhagen, pp. 285–295.

    Google Scholar 

  • Fabricius M, Lauritzen M (1994) Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats. Am J Physiol 266: H1457–1464.

    PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metaboUism during somatosensory stimulation in human subjects. Proc Natl Acad Sei USA 83:1140–1144.

    Article  CAS  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence CE (1988) Nonoxidative glucose consumption during focal physiological activity. Science 241: 462–464.

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Kuwabara H, Reutens DC, Gjedde A (1999) Oxygen consumption of cerebral cortex fails to increase during continued vibrotactile stimulation. J Cereb Blood Flow Metab 19:266–271.

    Article  PubMed  CAS  Google Scholar 

  • Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR (1997) Expression of monocar-boxylate transporter MCTl by brain endothelium and glia in adult and suckling rats. Am J Physiol 273: E207–213.

    PubMed  CAS  Google Scholar 

  • Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR (1998) Expression of the mono-carboxylate transporter MCT2 by rat brain glia. Glia 22: 272–281.

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg MD, Chang JY, Kelley RE, Yoshii F, Barker WW, Ingento G, Boothe TE (1988) Increases in both cerebral glucose utilization and blood flow during execution of a somatosensory task. Ann Neurol 23:152–160.

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A (1984) On the measurement of glucose in brain. Neurochem Res 9:1667–1671.

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A, Diemer NH (1983) Autoradiographic determination of regional brain glucose content. J Cereb Blood Flow Metab 3: 303–310.

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A, Ohta S, Kuwabara H, Meyer E (1991) Is oxygen diffusion limiting for blood-brain transfer of oxygen? In Lassen NA, Ingvar DH, Raichle ME, Friberg L (eds.) Brain Work and Mental Activity, Alfred Benzon Symposium 31, Munksgaard, Copenhagen, pp. 177–184.

    Google Scholar 

  • Gjedde A (1992) Blood-brain glucose transfer. In: Physiology and Pharmacology of the Blood-Brain Barrier, Chapter 6a: Handbook of Experimental Pharmacology, MWB Bradbury, ed. Springer-Verlag, BerUn Heidelberg 1992, p. 65–115.

    Google Scholar 

  • Gjedde A (1993) The energy cost of neuronal depolarization. In Gulyas B, Ottoson D, Roland PE (eds.) Functional Organization of the Human Visual Cortex, Pergamon Press, Oxford, pp. 291–306.

    Google Scholar 

  • Gjedde A (1996a) PET criteria of cerebral tissue viability in ischemia. Acta Neurol Scand 93:3–5.

    Article  Google Scholar 

  • Gjedde A (1996b) The relation between brain function and cerebral blood flow and metabohsm. Chapter 2, Cerebrovascular Disease (ed Batjer HH). Lippincott-Raven, Philadelphia, pp. 23–40.

    Google Scholar 

  • Halestrap AP (1975) The mitochondrial pyruvate carrier. Biochem J 148: 85–96.

    PubMed  CAS  Google Scholar 

  • Halestrap AP (1978) Stimulation of pyruvate transport in metabolizing mitochondria through changes in the transmembrane pH gradient induced by glucagon treatment of rat. Biochem J 172: 389–398.

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Armston AE (1984) A re-evaluation of the role of mitochondrial pyruvate transport in the hormonal control of rat liver mitochondrial pyruvate metabolism. Biochemical Journal 223: 677–85.

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343: 281–299.

    Article  PubMed  CAS  Google Scholar 

  • Hevner RF; Liu S; Wong-Riley MT (1995) A metabolic map of cytochrome oxidase in the rat brain: histochemical, densitometric and biochemical studies. Neuroscience 65: 313–342

    Article  PubMed  CAS  Google Scholar 

  • ladecola C (1992) Does nitric oxide mediate the increases in cerebral blood flow elicited by hypercapnia? Proc Natl Acad Sei USA. 89: 3913–3916.

    Article  Google Scholar 

  • ladecola C, Pelligrino DA, Moskowitz MA, Lassen NA (1994) Nitric oxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab 14: 175–192.

    Article  Google Scholar 

  • Kaplan NO, Everse J (1972) Regulatory characteristics of lactate dehydrogenases. Adv Enzyme Regul 10: 323–336.

    Article  PubMed  CAS  Google Scholar 

  • Kety SS (1949) The physiology of the human cerebral circulation. Anesthesiology 10: 610–614.

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Nakamura T, Nidaira T, Nakamura K, Ooashi N, Ito E, Watase K, Tanaka K, Wada K, Kudo Y, Miyakawa H (1999) Optical detection of synaptically induced glutamate transport in hippocampal slices. J Neurosci 19: 2580–2588

    PubMed  CAS  Google Scholar 

  • Kuwabara H, Evans AC, Gjedde A (1990) Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with [18F]fluoro-deoxyglucose. J Cereb Blood Flow Metab 10: 180–189.

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara H, Ohta S, Brust P, Meyer E, Gjedde A (1992) Density of perfused capillaries in living human brain during functional activation. Progr Brain Res 91: 209–215.

    Article  CAS  Google Scholar 

  • Kwong KK; Belliveau JW; Chesler DA; Goldberg IE; Weisskoff RM; Poncelet BP; Kennedy DN; Hoppel BE; Cohen MS; Turner R; et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc-Natl-Acad-Sci-U-S-A 89: 5675–5679.

    Article  PubMed  CAS  Google Scholar 

  • Laptook AR, Peterson J, Porter AM (1988) Effects of lactic acid infusions and pH on cerebral blood flow and metabolism. J Cereb Blood Flow Metab 8:193–200.

    Article  PubMed  CAS  Google Scholar 

  • Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39:183–238.

    PubMed  CAS  Google Scholar 

  • Laughton JD, Charnay Y, Belloir B, Pellerin L, Magistretti PJ, Bouras C (2000) Differential messenger RNA distribution of lactate dehydrogenase LDH-1 and LDH-5 isoforms in the rat brain. Neuroscience 96: 619–625.

    Article  PubMed  CAS  Google Scholar 

  • Longuemare MC, Rose CR, Farrell K, Ransom BR, Waxman SG, Swanson RA (1999) K(-l-)-induced reversal of astrocyte glutamate uptake is limited by compensatory changes in intracellular Na-H. Neuroscience 93: 285–292.

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Ayata C, Huang PL, Fishman MC, Moskowitz MA (1996) Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am J Physiol 270:H1085–1090.

    PubMed  CAS  Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283: 496–497.

    Article  PubMed  CAS  Google Scholar 

  • Marrett S, Gjedde A (1997) Changes of blood flow and oxygen consumption in visual cortex of living humans. Adv Exp Med Biol 413: 205–208.

    PubMed  CAS  Google Scholar 

  • Mathiesen C, Caesar K, Akgoren N, Lauritzen M (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol (Lond) 512: 555–566.

    Article  CAS  Google Scholar 

  • McCormick DA (1990) Membrane properties and neurotransmitter actions. In Shepherd G (ed.) The Synaptic Organization of the Brain, 3rd Ed., Oxford University Press, New York, pp. 32–66.

    Google Scholar 

  • Morowitz H J (1978) Foundations of Bioenergetics. Academic Press, New York.

    Google Scholar 

  • Murase K, Kuwabara H, Yasuhara Y, Evans AC, Gjedde A (1996) Mapping of change in cerebral glucose utihzation using fluorine-18 fluorodeoxyglucose double injection and the constrained weighted-integration method. IEEE Transact Med Imag 15: 824–835.

    Article  CAS  Google Scholar 

  • Ogawa M, Magata Y, Ouchi Y, Fukuyama H, Yamauchi H, Kimura J, Yonekura Y, Konishi J (1994) Scopolamine aboUshes cerebral blood flow response to somatosensory stimulation in anesthetized cats: PET study. Brain Res 650: 249–252.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Nayak AS, et al. (1990a) Oxygenation-sensitive contrast in magnetic resonance imaging of rodent brain at high magnetic fields. Magn Reson Med 14: 68–78.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S; Lee TM; Kay AR; Tank DW (1990b) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sei USA 87: 9868–72.

    Article  CAS  Google Scholar 

  • Ogawa S; Menon RS; Tank DW; Kim SG; Merkle H; Ellermann JM; Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys-J 64: 803–12.

    Article  PubMed  CAS  Google Scholar 

  • Ohta S, Meyer E, Thompson CJ and Gjedde A (1992) Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. J Cereb Blood Flow Metab 12:179–192.

    Article  PubMed  CAS  Google Scholar 

  • Ohta S, Meyer E, Fujita H, Reutens DC, Evans A, Gjedde A (1996) Cerebral [0-15]water clearance in humans determined by PET. I. Theory and normal values. J Cereb Blood Flow Metab 16: 765–780.

    Article  PubMed  CAS  Google Scholar 

  • Ohta S, Reutens DC, Gjedde A (1999) Brief vibrotactile stimulation does not increase cortical oxygen consumption when measured by single inhalation of positron emitting oxygen. J Cereb Blood Flow Metab 10: 260–265.

    Article  Google Scholar 

  • Oldendorf WH (1973) Carrier-mediated blood-brain barrier transport of short-chain monocar-boxylic organic acids. Am J Physiol 224: 1450–1453.

    PubMed  CAS  Google Scholar 

  • Pardridge WM (1981) Transport of nutrients and hormones through the blood-brain barrier. Diabetologia 20: 246–254.

    Article  PubMed  CAS  Google Scholar 

  • Paulson OB, Newman EA (1987) Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237: 896–898.

    Article  PubMed  CAS  Google Scholar 

  • Pette D (1985) Metabolic heterogeneity of muscle fibres. J Exp Biol 115: 179–189.

    PubMed  CAS  Google Scholar 

  • Poole RC, Halestrap AP (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264: C761–82.

    PubMed  CAS  Google Scholar 

  • Ribeiro L, Kuwabara H, Meyer E, Fujita H, Marrett S, Evans A, Gjedde A (1993) Cerebral blood flow and metabolism during nonspecific bilateral visual stimulation in normal subjets. In Uemura K, Lassen NA, Jones T, Kanno I (eds.) Quantification of Brain Function. Tracer Kinetics and Image Analysis in Brain PET, Elsevier, Amsterdam, pp. 217–224.

    Google Scholar 

  • Robin ED, Murphy BJ, Theodore J (1984) Coordinate regulation of glycolysis by hypoxia in mammalian cells. J Cell Physiol 118: 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood supply of the brain. J Physiol (Lond) 11:85–108.

    CAS  Google Scholar 

  • Seitz RJ, Roland PE (1992) Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metaboHsm: A positron emission tomography (PET) study. Acta Neurol Scand 86: 60–67.

    Article  PubMed  CAS  Google Scholar 

  • Shalit MN, Beller AJ, Feinsod M, Drapkin AJ, Cotev S (1970) The blood flow and oxygen consumption of the dying brain. Neurology 20: 740–748.

    PubMed  CAS  Google Scholar 

  • Shalit MN, Beller AJ, Feinsod M (1972) Clinical equivalents of cerebral oxygen consumption in coma. Neurology 22: 155–160.

    PubMed  CAS  Google Scholar 

  • Shearman MS, Halestrap AP (1894) The concentration of the mitochondrial pyruvate carrier in rat liver and heart mitochondria determined with alpha-cyano-beta-(l-phenylindol-3-yl)acrylate. Biochemical Journal 223: 673–676.

    Google Scholar 

  • Shram NF, Netchiporouk LI, Martelet C, Jaffrezic-Renault N, Bonnet C, Cespuglio R (1998) In vivo voltammetric detection of rat brain lactate with carbon fiber microelectrodes coated with lactate oxidase. Anal Chem. 1998 Jul 1; 70(13):2618–22.

    Article  PubMed  CAS  Google Scholar 

  • Shulman RG, Rothman DL (1998) Interpreting functional imaging studies in terms of neurotransmitter cycling. Proc Natl Acad Sei USA. 95: 11993–11998.

    Article  CAS  Google Scholar 

  • Silver IA, Erecinska M (1994) Extracellular glucose concentration in mammahan brain: Continous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci 14: 5068–5076.

    PubMed  CAS  Google Scholar 

  • Silver IA, Erecinska M (1997) Energetic demands of the Na-l-/K-H ATPase in mammalian astrocytes. Glia 21: 35–45.

    Article  PubMed  CAS  Google Scholar 

  • Skou JC (1960) Further investigations on a Mg++-Na+-activated adenosine-triphospha-tase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane. Biochim Biophys Acta 42: 6–23.

    Article  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Padak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albine rat. J Neurochem 28: 897–916.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L (1999) Energetics of functional activation in neural tissues. Neurochem Res 24: 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Szilard L (1929) Uber die Entropie Verminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Zeitsch Physik 53: 840–856.

    Article  CAS  Google Scholar 

  • Takahashi S, Shibata M, Fukuuchi Y (1997) Effects of increased extracellular potassium on influx of sodium ions in cultured rat astroglia and neurons. Brain Res (Dev Brain Res) 104: 111–117.

    Article  CAS  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276: 1699–1702.

    Article  PubMed  CAS  Google Scholar 

  • Tholey G, Roth-Schechter BF, Mandel P (1981) Activity and isoenzyme pattern of lactate dehydrogenase in neurons and astroblasts cultured from brains of chick embryos. J Neurochem 36: 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Vafaee M, Meyer E, Marrett S, Evans AC, Gjedde A (1998) Increased oxygen consumption in human visual cortex: Respond to visual stimulation. Acta Neurol Scand 98: 85–89.

    Article  PubMed  CAS  Google Scholar 

  • Vafaee MS, Meyer E, Marrett S, Paus T, Evans AC, Gjedde A (1999) Frequency-dependent changes in cerebral metabolic rate of oxygen during activation of human visual cortex. J Cereb Blood FlowMetab 19: 272–277.

    Article  CAS  Google Scholar 

  • Vafaee MS, Gjedde A (2000) Model of blood-brain transfer of oxygen explains non-linear flowmetabolism coupling during stimulation of visual cortex. J Cereb Blood Flow Metab 20:747–754.

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg (1998) Molecular pharmacology and physiology of glutamate transporters in the central nervous system. Vandenberg RJ Clin Exp Pharmacol Physiol 25: 393–400.

    Article  CAS  Google Scholar 

  • Villringer A, Dirnagl U (1995) CoupHng of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovascular Brain Metabohsm Reviews 7: 240–276.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Gjedde, A. (2003). Coupling and Compartmentation of Cerebral Blood Flow and Metabolism. In: Cerebral Blood Flow. Update in Intensive Care Medicine, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56036-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56036-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42684-4

  • Online ISBN: 978-3-642-56036-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics