Skip to main content

Neural Regulation of the Cerebral Circulation

  • Chapter
  • 176 Accesses

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 37))

Abstract

It was once believed that cerebral blood vessels could not dilate and constrict independently and that the cerebral circulation was entirely under the control of the systemic circulation [see ref 1 for a historical review]. However, evidence accumulated over the past 100 years indicates that cerebral blood vessels are in a dynamic state. Thus, the cerebral vasculature is endowed with complex regulatory systems that allow the brain to finely regulate its own blood supply. One of the major factors that regulates cerebral blood flow (CBF) is neuronal activity. In this chapter, we will focus on the mechanisms governing the relationship between neural activity and blood flow with emphasis on the role of nitric oxide (NO) and cyclooxygenase-2 (COX-2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedland, R. P. and C. Iadecola. Roy and Sherrington (1890): a centennial reexamination of “On the regulation of the blood-supply of the brain”. Neurology 1991;41: 10–4.

    PubMed  CAS  Google Scholar 

  2. Hossmann, K.-A. Viability thresholds and the penumbra of focal ischemia. Ann Neurol 1994;36: 557–565.

    Article  PubMed  CAS  Google Scholar 

  3. Reivich, M. Blood flow metaboUsm couple in brain. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 1974;53: 125–140.

    PubMed  CAS  Google Scholar 

  4. Raichle, M. E. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci USA 1998;95: 765–72.

    Article  PubMed  CAS  Google Scholar 

  5. Fulton, J. F. Observations upon the vascularity of the human occipital lobe during visual activity. Brain 1928;LI: 310–320.

    Article  Google Scholar 

  6. Mosso, A. Ueber den Kreislauf des Blutes im menschlichen Gehirn. Leipzig: Viet; 1881: 203.

    Google Scholar 

  7. Schmidt, C. and J. Hendrix. Action of chemical substances on cerebral blood vessels. Res. Publ. Assoc. Res. Nerv Ment. Dis. 1938; 18: 229–276.

    Google Scholar 

  8. Ereygang, W. H. and L. Sokoloff. Quantitative measurement of regional circulation in the central nervous system by the use of radioactive inert gas. Adv. Biol. Med. Phys. 1958;6:263–279.

    Google Scholar 

  9. Olesen, J. Contralateral focal increase of cerebral blood flow in man during arm work. Brain 1971;94: 635–646.

    Article  PubMed  CAS  Google Scholar 

  10. Greenberg, J., P. Hand, A. Sylvestro and M. Reivich. Localized metabolic-flow couple during functional activity Acta Neurol. Scand. 1979;72: 12–13.

    Google Scholar 

  11. Kuschinsky, W. Coupling of function metabolism and blood flow in the brain. NIPS 1987;2: 217–220.

    CAS  Google Scholar 

  12. Harder, D. R., R. J. Roman and D. Gebremedhin. Molecular mechanisms controlling nutritive blood flow: role of cytochrome P450 enzymes. Acta Physiol Scand 2000; 168: 543–9.

    Article  PubMed  CAS  Google Scholar 

  13. Bredt, D. and S. A. Snyder. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 1994;63: 175–195.

    Article  PubMed  CAS  Google Scholar 

  14. Garthwaite, J. and C. L. Boulton. Nitric oxide signaling in the central nervous system. Ann Rev Physiol 1995;57: 683–706.

    Article  CAS  Google Scholar 

  15. Garthwaite, J., S. L. Charles and R. Chess-Williams. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 1988;336: 385–388.

    Article  PubMed  CAS  Google Scholar 

  16. Gaily, J. A., P. R. Montague, G. N. J. Reeke and G. M. Edelman. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci USA 1990;87: 3547–51.

    Article  Google Scholar 

  17. Northington, F. J., G. P. Matherne and R. M. Berne. Competitive inhibition of nitric oxide synthase prevents the cortical hyperemia associated with peripheral nerve stimulation. Proc. Natl. Acad. Sei. USA 1992;89: 6649–6652.

    Article  CAS  Google Scholar 

  18. Dirnagl, U., U. Lindauer and A. Villringer. Role of nitric oxide in the coupling of cerebral blood flow to neural activation in rats. Neurosci. Lett. 1993;149: 43–46.

    Article  PubMed  CAS  Google Scholar 

  19. Iadecola, C., J. Li, T. J. Ebner and S. Xu. Nitric oxide contributes to functional hyperemia in cerebellar cortex. Am. J. Physiol. 1995;268 (Regulatory Integrative Comp. Physiol. 37): R1153–R1162.

    PubMed  CAS  Google Scholar 

  20. Ngai, A. C., J. R. Meno and H. R. Winn. L-NNA suppresses cerebrovascular response and evoked potentials during somatosensory stimulation in rats. Am J Physiol 1995;H1803–10.

    Google Scholar 

  21. Iadecola, C. The role of NO in cerebrovascular regulation and stroke. In: Mathie, R. T. and Griffith, T. M., ed. London: Imperial College Press; 1999: 202–225.

    Google Scholar 

  22. Faraci, F. M. and K. R. Breese. Nitric oxide mediates vasodilation in response to activation of N-methyl-D-aspartate receptors in brain. Circ. Res. 1993;72:476–480.

    PubMed  CAS  Google Scholar 

  23. Yang, G. and C. Iadecola. Glutamate microinjections in cerebellar cortex reproduce cerebral vascular effects of parallel fiber stimulation. Am. J. Physiol. 1996;271 (Regulatory Integrative Comp. PhysioL 40): R1568–R1575.

    PubMed  CAS  Google Scholar 

  24. Adachi, K., S. Takahashi, P. Melzer, K. L. Campos, T. Nelson, C. Kennedy and L. Sokoloff. Increases in local cerebral blood flow associated with somatosensory activation are not mediated by NO. Am J Physiol 1994;H2155–62.

    Google Scholar 

  25. Wang, Q., T. Kjaer, M. B. Jorgensen, O. B. Paulson, N. A. Lassen, N. H. Diemer and H. C. Lou. Nitric oxide does not act as a mediator coupling cerebral blood flow to neural activity following somatosensory stimuH in rats. Neurol Res 1993; 15: 33–36.

    PubMed  CAS  Google Scholar 

  26. Lindauer, U., D. Megow, H. Matsuda and U. Dirnagl. Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex. Am J Physiol 1999;277: H799–H811.

    Google Scholar 

  27. Ma, J., C. Ayata, P. L. Huang, M. C. Fishman and M. A. Moskowitz. Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am J Physiol 1996;270 (Heart Circ Physiol 39): H1085-90.

    Google Scholar 

  28. Iadecola, C., J. Li, G. Yang and S. Xu. Neural mechanisms of blood flow regulation during synaptic activity in cerebellar cortex. J. Neurophysiol. 1996;75: 940–950.

    PubMed  CAS  Google Scholar 

  29. Akgöpren, N., M. Fabricius and M. Lauritzen. Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation. Proc. Natl. Acad. Sei. USA 1994;91: 5903–5907.

    Article  Google Scholar 

  30. Yang, G. and C. Iadecola. Obligatory role of NO in glutamate-dependent hyperemia evoked from cerebellar parallel fibers. Am. J. Physiol 1997;272 (Regulatory Integrative Comp. Physiol 41): R1155–R1161.

    PubMed  CAS  Google Scholar 

  31. Yang, G., G. Chen, T. J. Ebner and C. Iadecola. Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rat. Am. J. Physiol. 1999;277 (Regulatory Integrative Comp. Physiol. 46): R1760–R1770.

    PubMed  CAS  Google Scholar 

  32. Vane, J. R., Y. S. Bakhle and R. M. Botting. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 1998;38: 97–120.

    Article  PubMed  CAS  Google Scholar 

  33. Kaufmann, W. E., P. F. Worley, J. Pegg, M. Bremer and P. Isakson. COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci USA 1996;93: 2317–21.

    Article  PubMed  CAS  Google Scholar 

  34. Yamagata, K., K. I. Andreasson, W. E. Kaufmann, C. A. Barnes and P. F. Worley. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 1993;11: 371–86.

    Article  PubMed  CAS  Google Scholar 

  35. Woolsey, T. A. and C. M. Rovainen. Wisker barrels: A model for direct observation of changes in the cerebral microcirculation with neural activity. In: Lassen, N. A., Ingvar, D. H. and Raichle, M. E., ed. Brain Work and Mental Activity. Copenhagen: Munksgaard; 1991:189–200.

    Google Scholar 

  36. Niwa, K., E. Araki, S. G. Morham, M. E. Ross and C. Iadecola. Cyclooxygenase-2 Contributes to Functional Hyperemia in Whisker-Barrel Cortex. J Neurosci 2000;20: 763–770.

    PubMed  CAS  Google Scholar 

  37. Ellis, E. F., E. P. Wei and H. A. Kontos. Vasodilation of cat cerebral arterioles by prostaglandins D2, E2, G2, and 12. Am J Physiol 1979;237: H381–5.

    PubMed  CAS  Google Scholar 

  38. Wei, E. P., H. A. Kontos and J. S. Beckman. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Physiol 1996;271: H1262–6.

    PubMed  CAS  Google Scholar 

  39. Iadecola, C., G. Yang, T. Ebner and G. Cheng. Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. J. Neurophysiol. 1997;78: 651–659.

    PubMed  CAS  Google Scholar 

  40. Ngai, A. C., K. R. Ko, S. Morii and H. R. Winn. Effect of sciatic nerve stimulation on pial arterioles in rats. Am. J Physiol 1988;254: H133–H139.

    PubMed  CAS  Google Scholar 

  41. Duling, B. R. and R. M. Berne. Propagated vasodilation in the microcirculation of the hamster cheek pouch. Circ. Res. 1970;26: 163–170.

    PubMed  CAS  Google Scholar 

  42. Segal, S. S. and B. R. Duling. Flow control among microvessels coordinated by intercellular conduction. Science 1986;234: 868–870.

    Article  PubMed  CAS  Google Scholar 

  43. Fujii, K., F. Faraci and D. D. Heistad. Flow-mediated vasodilation of the basilar artery in vivo. Circ. Res. 1991;69: 697–705.

    PubMed  CAS  Google Scholar 

  44. Gaw, J. and J. A. Bevan. Flow-induced relaxation of the rabbit middle cerebral artery is composed of both endothelium-dependent and-independent componenets. Stroke 1993;24: 105–110.

    Article  PubMed  CAS  Google Scholar 

  45. Dietrich, H. H., T. Kajita and R. G. Dacey. Local and conducted vasomotor responses in isolated rat cerebral arterioles. Am. J. Physiol. 1996;271 (Heart Circ. Physiology 40): H1109–H1116.

    PubMed  CAS  Google Scholar 

  46. Segal, S. S. Communication among endothelial and smooth muscle cells coordinates blood flow control during exercise. News Physiol. Sci. 1992;7: 152–156.

    Google Scholar 

  47. Iadecola, C. Neurogenic control of the cerebral microcirculation: Is dopamine minding the store? Nature Neurosci 1998;1: 263–265.

    Article  PubMed  CAS  Google Scholar 

  48. Iadecola, C. Intrinsic and extrinsic neural regulation of the cerebral circulation. In: Schmiedek, P., Einhäupl, K. and Kirsch, C.-M., ed. Stimulated Cerebral Blood Flow. Heidelberg: Springer-Verlag; 1992: 19–36.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Iadecola, C., Niwa, K. (2003). Neural Regulation of the Cerebral Circulation. In: Cerebral Blood Flow. Update in Intensive Care Medicine, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56036-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56036-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42684-4

  • Online ISBN: 978-3-642-56036-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics