Skip to main content

Neuroprotective Stroke Trials: A Ten Year Dry Season

  • Chapter
Cerebral Blood Flow

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 37))

Abstract

For stroke patients presenting within 3 hours of a significant hemispheric ischemic stroke, thrombolysis induced by the administration of exogenous tPA will reduce death and disability [1]. For every thousand stroke patients treated, an additional 160 will recover to an independent status within three months. The data for patients treated between three and six hours suggests there may be a signal of efficacy but neither the clinical trials [2] nor the meta-analysis has yet to give us a robust answer [3]. The fact that patients benefit within three hours, but not between three and six, is not because of an excess of hemorrhages in the three to six hour group [3], but because of a lack of cell recovery following brain resuscitation with delayed reperfusion. Simply stated the reperfusion is too late. While the best neuroprotectant will always be the rapid return of oxygen and glucose, the fact that attempts to restore circulation within the first three hours are highly effective confirms the concept that reperfusion will salvage brain tissue. A successful neuroprotectant must either increase the time window to allow more patients to be effectively reperfused, perhaps up to six hours, or reduce the injury sustained during ischemia. In the event that reperfusion is injurious, it must reduce not only the initial reperfusion injury but also sustain cells which are left ailing in the hours and days that follow successful reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. New England Journal of Medicine 1995; 333:1581–1587.

    Article  Google Scholar 

  2. Hacke W, Kaste M, Fieschi C, et al. Randomised double blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute stroke (ECASS II). Lancet 1998; 352:1245–1251.

    Article  PubMed  CAS  Google Scholar 

  3. Wardlaw JM, Yamaguchi T, del Zoppo G. Thrombolytic therapy versus control in acute ischaemic stroke. Stroke module of the Cochrane Database of Systematic Reviews. Available in the Cochrane Library (database on disk and CDROM). Oxford: Update software, 1999.

    Google Scholar 

  4. Buchan AM, Pulsinelli WA. Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 1990;10:311–316.

    PubMed  CAS  Google Scholar 

  5. Colbourne F, Li H, Buchan AM. Continuing post-ischemic neuronal death in CA1: Influence of ischemia duration, and cytoprotective doses of NBQX and SNX-111. Stroke 1999;30:662–668.

    Google Scholar 

  6. Pulsinelli WA, Brierly JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 1979;10:267–272.

    Article  PubMed  CAS  Google Scholar 

  7. Pulsinelli WA, Buchan AM. The four-vessel occlusion rat model: method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke 1988;19:913–914.

    Article  PubMed  CAS  Google Scholar 

  8. Smith ML, Bendek G, Dahlgren N, Rosen I, Wieloch T, Siesjo BK. Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol Scand 1984;69;385–401.

    Article  PubMed  CAS  Google Scholar 

  9. Pulsinelli WA, Duffy TE. Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem 1983;40:1500–1503.

    Article  PubMed  CAS  Google Scholar 

  10. Colbourne F, Li H, Buchan AM. Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats. J Cereb Blood Flow Metab 1999;19:742–749.

    Article  PubMed  CAS  Google Scholar 

  11. Buchan AM, Xue D, Slivka A. A new model of temporary focal neocortical ischemia in the rat. Stroke 1992;23:273–279.

    Article  PubMed  CAS  Google Scholar 

  12. Kaplan B, Brint S, Tanabe J, Jacewicz M, Wang XJ, Pulsinelli W. Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke 1991; 22:1032–1039.

    Article  PubMed  CAS  Google Scholar 

  13. Li H, Sun P, Buchan AM. Maturation of ischemic neuronal death following focal cerebral ischemia. Stroke 2000;31:275

    Article  Google Scholar 

  14. Li H, Colbourne F, Sun P, Zhao Z, Buchan AM. Caspase inhibitors reduce neuronal injury after focal but not global cerebral ischemia in rats. Stroke 2000:31:176–182.

    Article  PubMed  CAS  Google Scholar 

  15. Choi DW. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 1988;11:465–469.

    Article  PubMed  CAS  Google Scholar 

  16. Pellegrini-Giampietro DE, Zukin RS, Bennett MVL, Cho S, Pulsinelli WA. Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc Natl Acad Sci USA 1992;89:10499–10503.

    Article  PubMed  CAS  Google Scholar 

  17. Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH. Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 1999:19:39

    Google Scholar 

  18. Gill R, Foster AC, Woodruff GN. Systematic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. J Neurosci 1987;7:3343–3349.

    PubMed  CAS  Google Scholar 

  19. Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J. Focal cerebral ischemia in the cat: treatment with the glutamate antagonist MK-801 after induction of ischaemia. J Cereb Blood Flow Metab 1988;8:757–762.

    Article  PubMed  CAS  Google Scholar 

  20. Buchan AM, Li H, Pulsinelli WA. The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient severe forebrain ischemia in adult rats. J Neurosci 1991;11:1049–1056.

    PubMed  CAS  Google Scholar 

  21. Buchan AM, Slivka A, Xue D. The effect of the NMDA receptor antagonist MK-801 on cerebral blood flow and infarct volume in experimental focal stroke. Brain Res 1992;574:171–177.

    Google Scholar 

  22. Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 1990;244:1360–1362.

    Article  Google Scholar 

  23. Buchan AM. Do NMDA antagonists protect against cerebral ischemia: are clinical trials warranted? Cerebrovas Brain Metab Rev 1990;2:1–26.

    CAS  Google Scholar 

  24. Simon R, Shiraishi K. N-methyl-D-aspartate antagonist reduces stroke size and regional glucose metabolism. Ann Neurol 1990;27:606–611.

    Article  PubMed  CAS  Google Scholar 

  25. Takizawa S, Hogan M, Hakim AM. The effects of a competitive NMDA receptor antagonist (CGS 19755) on cerebral blood flow and pH in focal ischemia. J Cereb Blood Flow Metab 1991;11:786–793.

    Article  PubMed  CAS  Google Scholar 

  26. Davis SM, Lees KR, Albers GW, Diener HC, Markabi S, Karlsson G, et al. for the ASSIST Investigators. Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 2000;31:347–354.

    Article  PubMed  CAS  Google Scholar 

  27. Davis SM, Albers GW, Diener HC, Lees KR, Norris J. Termination of acute studies involving selfotel treatment. ASSIST Steering Committee. Lancet 1997;349:32.

    Article  PubMed  CAS  Google Scholar 

  28. Morris GF, Bullock R, Marshall SB, Marmarou A, Maas A, Marshall LF. Failure of the competitive N-methyl-D-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of phase III clinical trials. The Selfotel Investigators. J Neurosurg 1999;91:737–743.

    Article  PubMed  CAS  Google Scholar 

  29. Meadows M-E, Fisher M, Minematsu K. Delayed treatment with a noncompetitive NMDA antagonist, CNS-1102, reduces infarct size in rats. Cerebrovasc Dis 1994;4:26–31.

    Article  Google Scholar 

  30. Gamzu ER. CERESTAT® in the treatment of acute cerebral ischemia and TBI. In: Grotta J, Miller LP, Buchan AM, eds. Ischemic Stroke: Recent Advances in Understanding and Therapy. International Business Communications. 1995:86–110.

    Google Scholar 

  31. Gamzu ER, for the CNS 1102-002 Study Group. CERESTATâ„¢ (CNS-1102), an NMDA antagonist in severe traumatic brain injury (TBI) patients: a safety study. American Neurology Association 1994 Oct.

    Google Scholar 

  32. Scatton B, Giroux C, Thenot JP, et al. Eliprodil hydrochloride. Drugs Future 1994;19:905–909.

    Google Scholar 

  33. Carter C, Avenet P, Benavides J, et al. Ifenprodil and eliprodil: neuroprotective NMDA receptor antagonists and calcium channel blockers. In: Herrling PL, ed. Excitatory Amino Acids — Clinical results with Antagonists. San Diego, CA: Academic Press; 1997:57–80.

    Chapter  Google Scholar 

  34. US and Canadian Lubeluzole Ischemic Stroke Study Group. Lubeluzole treatment of acute ischemic stroke. Stroke 1997;28:2338–2346.

    Article  Google Scholar 

  35. Diener HC, Hacke W, Hennerici M, Radberg J, Hantson L, DeKeyser J, for the Lubeluzole International Study Group. Lubeluzole in acute ischemic stroke. A double-blind placebo-controlled phase II trial. Stroke 1996;27:76–81.

    Article  PubMed  CAS  Google Scholar 

  36. Grotta J. Acute stroke therapy at the millennium: consummating the marriage between the laboratory and bedside. The Feinberg lecture. Stroke 1999;30:1722–1728.

    Article  PubMed  CAS  Google Scholar 

  37. Dyker AG, Lees KR. Safety and tolerability of GV150526 (a glycine site antagonist at the N-methyl-D-aspartate receptor) in patients with acute stroke. Stroke 1999;30:986–992.

    Article  PubMed  CAS  Google Scholar 

  38. Warner D, Martin D, Ludwig P, McAllister A, Keana J, Weber E. In vivo models of cerebral ischemia: effects of parenterally administered NMDA receptor glycine site antagonists. I Cereb Blood Flow Metab 1995;15:188–196.

    Article  CAS  Google Scholar 

  39. The North American Glycine Antagonist in Neuroprotection (GAIN) Investigators. Phase II studies of the glycine antagonist GV150526 in acute stroke. The North American experience. Stroke 2000;31:358–365.

    Article  Google Scholar 

  40. Sheardown MJ, Nielson EØ, Hansen AJ, Jacobsen P, Honre T. 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 1990;247:571–574.

    Article  PubMed  CAS  Google Scholar 

  41. Buchan AM, Li H, Cho SH, Pulsinelli WA. Blockade of the AMPA receptor prevents CA1 hippocampal injury following severe but transient forebrain ischemia in adult rats. Neurosci Let 1991;132:255–258.

    Article  CAS  Google Scholar 

  42. Buchan AM, Xue D, Huang ZG, Smith KE, Lesiuk H. Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. Neuro Report 1991;2:473–476.

    CAS  Google Scholar 

  43. Xue D, Huang ZG, Barnes K, Lesiuk HJ, Smith KE, Buchan AM. Delayed treatment with AMPA, but not NMDA, antagonists reduces neocortical infarction. J Cereb Blood Flow Metab 1994;14:251–261.

    Article  PubMed  CAS  Google Scholar 

  44. Li H, Buchan AM. Treatment with an AMPA antagonist 12 hours following severe normothermic forebrain ischemia prevents CA1 neuronal injury. J Cereb Blood Flow Metab 1993;13:933–939.

    Article  PubMed  CAS  Google Scholar 

  45. Yao H, Ibayashi S, Nakane H, Cai H, Uchimura H, Fujishima M. AMPA receptor antagonist, YM90 K, reduces infarct volume in thrombotic distal middle cerebral artery (MCA) occlusion in spontaneously hypertensive rats (SHR). J Cereb Blood Flow Metab 1997; 17, Suppl 1.

    Google Scholar 

  46. Grooms SY, Colbourne F, Zukin RS, Bucham AM, Bennett MVL. Delayed postischemic hypothermia attenuates downregulation of the AMPA receptor Subunit GluR2 and promotes its recovery. Society for Neuroscience annual meeting, November 2000. P 909 Vol. 2000

    Google Scholar 

  47. Valentino K, Newcomb R, Gadbois T, et al. A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc Natl Acad Sci USA 1993;90:7894–7897.

    Article  PubMed  CAS  Google Scholar 

  48. Buchan AM, Gertler SZ, Li H, et al. A selective N-type CA++ channel blocker prevents CA1 injury 24 h following severe forebrain ischemia and reduces infarction following focal ischemia. J Cereb Blood Flow Metab 1994;14:903–910.

    Article  PubMed  CAS  Google Scholar 

  49. Carter AJ, Grauert M, Pschorn U, et al. Potent blockade of sodium channels and protection of brain tissue from ischemia by Bill 890 CL. Proc Natl Acad Sci USA 2000;97:4944–4949.

    Article  PubMed  CAS  Google Scholar 

  50. Weiser T, Brenner M, Palluk R, et al. BIIR 561 CL: A novel combined antagonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and voltage-dependent sodium channels with anticonvulsive and neuroprotective properties. J Pharmacol Exper Therap 1999;289:1343–1349.

    CAS  Google Scholar 

  51. Cross AJ, Jones JA, Baldwin MA, Green AR. Neuroprotective activity of clomethiazole following transient forebrain ischemia in the gerbil. Br J Pharmacol 1991;104:406–411.

    PubMed  CAS  Google Scholar 

  52. Sydserff SG, Cross AJ, West KJ, Green AR. The effect of chlomethiazole on ischaemic neuronal damage in a model of transient focal ischaemia. Br J Pharmacol 1995;114:1631–1635.

    PubMed  CAS  Google Scholar 

  53. Wahlgren NG, Ranasinha KW, Rosolacci T, et al. for the CLASS Study Group. Clomethiazole Acute Stroke Study (CLASS): results of a randomized controlled trial of clomethiazole versus placebo in 1360 acute stroke patients. Stroke 1999;30:21–28.

    Article  PubMed  CAS  Google Scholar 

  54. Wahlgren NG, Bornhov S, Sharma A, et al. for the CLASS Study Group. The Clomethizaole Acute Stroke Study (CLASS): efficacy results in 545 patients classified as total anterior circulation syndrome (TACS). J Stroke Cerebrovasc Dis 1999;8:231–239.

    Article  PubMed  CAS  Google Scholar 

  55. Shuaib A. Safety of chlomethiazole for acute stroke — hemorrhages (CLASS-H): final results. Neurology 2000;54(suppl 3):A64.

    Google Scholar 

  56. Lyden PD. Safety and efficacy of combined chlomethiazole and tPA for acute stroke — CLASS-T: a pilot study Neurology 2000;54(suppl 3):A88.

    Google Scholar 

  57. Teal P, on behalf of the BRAIN study group. BRAINS, a phase II study of the neuroprotectant BAY x3702 in patients with ischemic stroke. Cerebrovasc Dis 1998;8:51–103.

    Article  Google Scholar 

  58. Hall ED. Free radicals in stoke. In: Miller LP, ed. Stroke Therapy: Basic, PreClinical and Clinical Directions. New York, NY: John Wiley & Sons, Inc; 1999:245–270.

    Google Scholar 

  59. Buchan AM, Bruederlin B, Heinicke E, Li H. Failure of the lipid peroxidation inhibitor, U74006F, to prevent post-ischemic selective neuronal injury. J Cereb Blood Flow Metab 1992;12:250–256.

    Article  PubMed  CAS  Google Scholar 

  60. Xue D, Slivka A, Buchan AM. Trilazad reduces cortical infarction after transient but not permanent focal cerebral ischemia in rats. Stroke 1992;23:894–899.

    Article  PubMed  CAS  Google Scholar 

  61. Cao X, Phillis J. α-phenyl-tert-butyl-nitrone reduced cortical infarct and edema in rats subjected to focal ischemia. Brain Res 1994;644:267–272.

    Article  PubMed  CAS  Google Scholar 

  62. Kuroda S, Tsuchidate R, Smith M-L, Maples KR, Siesjo BK. Neuroprotective effects of a novel nitrone, NXY-059, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 1999;19:778–787.

    Article  PubMed  CAS  Google Scholar 

  63. Zhao Z, Cheng M, Maples KR, Ma SY, Buchan AM. NXY-059, a novel free radical trapping compound, reduces cortical infarction after permanent focal cerebral ischemia in the rat. Brain Research 2001; in press.

    Google Scholar 

  64. Cramer SC, Finkelstein SP. Reparative approaches: growth factors and other pharmacological treatments. In: Miller LP, ed. Stroke Therapy: Basic, Preclinical and Clinical Directions. New York, NY: John Wiley & Sons, Inc; 1999:321–336.

    Google Scholar 

  65. The Enlimomab Acute Stroke Trial Investigators. The Enlimomab acute stroke trial: final results. Neurology 1997;48:A270.

    Google Scholar 

  66. Clark WM, Warach SJ, Pettigrew LC, Gammans RE, Sabounjian LA, for the Citicoline Stroke Study Group. A randomized dose-response trial of citicoline in acute ischemic stroke patients. Neurology 1999;49:671–678.

    Google Scholar 

  67. Chaves CJ, Silver B, Schlaug G, Dashe J, Caplan LR, Warach S. Diffusion-and perfusion-weighted MRI patterns in borderzone infarcts. Stroke 2000;31:1090–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Buchan, A.M. (2003). Neuroprotective Stroke Trials: A Ten Year Dry Season. In: Cerebral Blood Flow. Update in Intensive Care Medicine, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56036-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56036-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42684-4

  • Online ISBN: 978-3-642-56036-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics