Skip to main content

Cerebral Blood Flow Measurement with Positron Emission Tomography

  • Chapter
  • 181 Accesses

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 37))

Abstract

Measurement of cerebral blood flow (CBF) has provided much valuable information about normal physiology and disease-induced pathophysiology. A variety of techniques currently are available to measure quantitative regional CBF in the living human brain. Among these, positron emission tomography (PET) has both distinct advantages and disadvantages. PET can provide accurate quantitative regional measurements of CBF with excellent reproducibility, but spatial resolution is somewhat limited. The real advantage of PET over other techniques, however, stems from its capacity to provide measurements of metabolism as well. This combination has been especially useful for the study of ischemia, providing new insights into the role of ischemia in various disease states.

This research was supported by USPHS grants NS39529, NS35966, NS28947, NS06833 and The Lillian Strauss Fund of the Jewish Hospital of St. Louis

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ter-Pogossian MM: Positron emission tomography instrumentation In: Reivich M, Alavi A eds. Positron Emission Tomography. New York: Alan R. Liss, Inc.; 1985:43–61.

    Google Scholar 

  2. Hoffman EJ, Phelps ME: Positron emission tomography: Principles and quantitation In: Phelps M, Mazziotta J, Schelbert H; eds. Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart. New York: Raven Press; 1986:237–286.

    Google Scholar 

  3. Lammertsma AA, Frackowiak RSJ: Positron emission tomography. CRC Crit Rev Biomed Eng 1985;13:125–169.

    CAS  Google Scholar 

  4. Powers WJ, Raichle ME: Positron emission tomography and its application to the study of cerebrovascular disease in man. Stroke 1985;16:361–376

    Article  PubMed  CAS  Google Scholar 

  5. Hoffman EJ, Huang SC, Phelps ME: Quantitation in positron emission computed tomograph: 1. Effect of object size. J Comput Assist Tomogr 1979;3:299–308.

    Article  PubMed  CAS  Google Scholar 

  6. Budinger TF, Derenzo SE, Gullberg GT, Greenberg WL, Huesman RH: Emission computer assisted tomography with single-photon and positron annihilation photon emitters. J Comput Assist Tomogr 1977;1:131–145.

    Article  PubMed  CAS  Google Scholar 

  7. Videen TO, Dunford-Shore JE, Diringer MN, Powers WJ: Correction for partial volume effects in regional blood flow measurements adjacent to hematomas in humans with intracerebral hemorrhage: Implementation and validation. J Comput Assist Tomogr 1999;23:248–256

    Article  PubMed  CAS  Google Scholar 

  8. Frackowiak RSJ, Lenzi GL, Jones T, Heather JD: Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: Theory, procedure and normal values. J Comput Assist Tomogr 1980;4:727–736.

    Article  PubMed  CAS  Google Scholar 

  9. Ohta S, Meyer E, Fujita H, Reutens DC, Evans A, Gjedde A: Cerebral [15O] water clearance in humans determined by PET: I. Theory and normal values. J Cereb Blood Flow Metab 1996; 16: 765–780

    Article  PubMed  CAS  Google Scholar 

  10. Carson RE, Huang S, Green MV: Weighted integration method for local cerebral blood flow measurements with Positron emission tomography. J Cereb Blood Flpw Metab 1986

    Google Scholar 

  11. Holden JE, Gatiey SJ, Hichwa RD, Ip WR, Shaughnessy WJ, Nickles RJ, Polcyn RE: Cerbral blood flow using PET measurements of fluoromethane kinetics J Nucl Med 1981 22:1084–1088

    PubMed  CAS  Google Scholar 

  12. Herscovitch P, Markham J, Raichle ME: Brain blood flow measured with intravenous H2 15O.I. Theory and error analysis. J Nucl Med 1983;24:782–789.

    PubMed  CAS  Google Scholar 

  13. Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J: Brain blood flow measured with intravenous H2 15O. II. Implementation and validation. J Nucl Med 1983;24:790–798.

    PubMed  CAS  Google Scholar 

  14. Berridge MS, Adler BL, Nelson AD, Cassidy EH, Muzic RF, Bednarczyk EM, Miraldi F: Measurement of human cerebral blood flow with [15O]butanol positron emission tomography. J Cereb Blood Flow Metab 1991;11:707–715.

    Article  PubMed  CAS  Google Scholar 

  15. Eichling JO, Raichle ME, Grubb RL Jr, Ter-Pogossian M: Evidence of the limitations of water as a freely diffusible tracer in brain of the rhesus monkey. Circ Res 1974;35:358–364.

    PubMed  CAS  Google Scholar 

  16. Baron J, Frackowiak RSJ, Herholz K, Jones T, Lammertsma AA, Mazoyer B, Wienhard K: Use of PET methods for measurement of cerebral energy metabolism and hemodynamics in cerebrovascular disease. J Cereb Blood Flow Metab 1989;9:723–742.

    Article  PubMed  CAS  Google Scholar 

  17. Landau WM, Freygang WH Jr, Rowland LP, Sokoloff L, Kety SS: The local circulation of the living brain: Values in the unanesthetized and anesthetized cat. Trans Am Neurol Assoc 1955; 80:125–129.

    Google Scholar 

  18. Kety SS: Measurement of local blood flow by the exchange of an inert diffusible substance. Methods Med Res 1960;8:228–236.

    Google Scholar 

  19. Diringer MN, Yundt K, Videen TO, Adams RE, Zazulia AR, Deibert E, Aiyagari V, Dacey RG Jr, Grubb RL Jr, Powers WJ: No reduction in cerebral metqbolism as a result of early moderat hyperventilation following severe traumatic brain injury. J Neurosurg 2000; 92: 7–13

    Article  PubMed  CAS  Google Scholar 

  20. Powers WJ, Zazulia AZ, Videen TO, Diringer MN: Effect of Phamacologic Blood Pressure Reduction on CBF in Patients with Acute Intracerebral Hemorrhage. Society of Nuclear Medicine Abstracts, May 2000

    Google Scholar 

  21. Powers WJ: Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 1991;29:231–240.

    Article  PubMed  CAS  Google Scholar 

  22. Lammertsma AA, Jones T: Correction for the presence of intravascular oxygen-is in the steady state technique for measuring regional oxygen extraction ratio in the brain: 1. Description of the method. J Cereb Blood Flow Metab 1983; 13:416–424.

    Article  Google Scholar 

  23. Pantano P, Baron J-C, Crouzel C, Collard P, Sirou P, Samson Y: The 150 continuous-inhalation method: Correction for intravascular signal using C 0. Eur J Nuci Med 1985;10:387–391.

    CAS  Google Scholar 

  24. Mintun MA, Raichle ME, Martin WRW, Herscovitch P: Brain oxygen utilization measured with 0–15 radiotracers and positron emission tomography. J Nucl Med 1984;25:177–187

    PubMed  CAS  Google Scholar 

  25. Altman DI, Lich LL, Powers WJ: Brief inhalation method to measure cerebral oxygen extraction with PET: Accuracy determination under pathological conditions. J Nucl Med 1991; 32:1738–1741.

    PubMed  CAS  Google Scholar 

  26. Ohta S, Meyer E, Thompson CJ, Gjedde A: Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. J Cereb Blood Flow Metab 1992; 12: 179–192.

    Article  PubMed  CAS  Google Scholar 

  27. Carpenter DA, Grubb RL Jr, Tempel LW, Powers WJ: Cerebral oxygen metabolism after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow and Metab 1991;11:837–844.

    Article  CAS  Google Scholar 

  28. Zazulia AR, Diringer MN, Videen TO, Aiyagari V, Deibert EM, Powers WJ: Acute intracerebral hemorrhage does not produce peri-clot cerebral ischemia. Neurology 2000; 54(Suppl 3): A261

    Google Scholar 

  29. Powers WJ, Zazulia AZ, Videen TO, Dacey RJ Jr, Grubb RL Jr, Diringer MN: Effect of hyperventilation on regional cerebral oxygen metabolism following severe traumatic brain injury. Society of Nuclear Medicine Abstracts, May 2000

    Google Scholar 

  30. Powers WJ, Press GA, Grubb RL, Jr., Gado M, Raichle ME. The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann Int Med 1987; 106:27–35.

    PubMed  CAS  Google Scholar 

  31. Powers WJ, Tempel LW, Grubb RL, Jr. Influence of cerebral hemodynamics on stroke risk: One-year follow-up of 30 medically treated patients. Ann Neurol 1989; 25:325–330.

    Article  PubMed  CAS  Google Scholar 

  32. Grubb RL Jr, Derdeyn CP, Fritsch SM, Carpenter DA, Yundt KD, Videen TO, Spitznagel EL, Powers WJ: The importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA 1998; 280:1055–1060.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Powers, W.J. (2003). Cerebral Blood Flow Measurement with Positron Emission Tomography. In: Cerebral Blood Flow. Update in Intensive Care Medicine, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56036-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56036-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42684-4

  • Online ISBN: 978-3-642-56036-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics