Skip to main content

Reverse Genetics of Arenaviruses

  • Chapter
Arenaviruses I

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 262))

Abstract

Arenaviruses merit significant attention both as experimental models to study acute and persistent infections and as clinically important human pathogens, including hemorrhagic fever agents such as Lassa virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atreya PL, Peeples ME, Collins PL (1998) The NS1 protein of human respiratory syncytial virus is a potent inhibitor of minigenome transcription and RNA replication. J Virol 72:1452–1461

    PubMed  CAS  Google Scholar 

  • Auperin DD, Romanowski V, Galinski M, Bishop DHL (1984) Sequencing studies of Pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J Virol 52:897–904

    PubMed  CAS  Google Scholar 

  • Borden KL, Campbell Dwyer ES, Salvato MS (1998) An arenavirus RING (zinc-binding) protein binds the oncoprotein promyelocyte leukemia protein (PML) and relocates PML nuclear bodies to the cytoplasm. J Virol 72:758–766

    PubMed  CAS  Google Scholar 

  • Bridgen A, Elliott RM (1996) Rescue of segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci USA 93:15400–15404

    Article  PubMed  CAS  Google Scholar 

  • Buchmeier MJ, Zajac AJ (1999) Lymphocytic choriomeningitis virus. In: Ahmed R, Chen I (eds) Persistent viral infections. Wiley, New York

    Google Scholar 

  • Buchmeier MJ, Southern PJ, Parekh BS, Wooddell MK, Oldstone MBA (1987) Site-specific antibodies define a cleavage site conserved among arenavirus GP-C glycoproteins. J Virol 61:982–985

    PubMed  CAS  Google Scholar 

  • Burns JW, Buchmeier MJ (1991) Protein-protein interactions in lymphocytic choriomeningitis virus. Virology 183:620–629

    Article  PubMed  CAS  Google Scholar 

  • Burns JW, Buchmeier MJ (1993) Glycoproteins of the arenaviruses. In: Salvato MS (ed) The arenaviridae. Plenum Press, New York

    Google Scholar 

  • Cadd T, Garcin D, Tapparel C, Itoh M, Homma M, Roux L, Curran J, Kolakofsky D (1996) The Sendai paramyxovirus accessory C proteins inhibit viral genome amplification in a promoter-specific fashion. J Virol 70:5067–5074

    PubMed  CAS  Google Scholar 

  • Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, Nichol ST, Compans RW, Campbell KP, Oldstone MBA (1998) Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282:2079–2081

    Article  PubMed  CAS  Google Scholar 

  • Ciampor F (1988) The role of cytoskeleton and nuclear matrix in virus replication. Acta Virol 32:168–189

    PubMed  CAS  Google Scholar 

  • Cole GA, Nathanson N, Prendergast RA (1972) Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature 238:335–337

    Article  PubMed  CAS  Google Scholar 

  • Collins PL, Hill MG, Camargo E, Grosfeld H, Chanock RM, Murphy BR(1995) Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5’ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci USA 92: 11563–11567

    Article  PubMed  CAS  Google Scholar 

  • Collins PL, Hill MG, Cristina J, Grosfeld H (1996) Transcription elongation factor of respiratory syncytial virus, a nonsegmented negative-strand RNA virus. Proc Natl Acad Sci USA 93:81–85

    Article  PubMed  CAS  Google Scholar 

  • Compans RW (1993) Arenavirus ultrastructure and morphogenesis. In: Salvato MS (ed) The arenaviridae. Plenum, New York

    Google Scholar 

  • Conzelmann KK (1998) Nonsegmented negative-strand RNA viruses: genetics and manipulation of viral genomes. Annu Rev Genet 32:123–162

    Article  PubMed  CAS  Google Scholar 

  • Cornu TI, de la Torre JC (2001) RING finger Z protein of lympocytic choriomeningitis virus (LCMV) inhibits transcription and RNA replication of an LCMV s-segment minigenome. J Virol 75:9415–9426

    Article  PubMed  CAS  Google Scholar 

  • Craven RC, Harty RN, Paragas J, Palese P, Wills JW (1999) Late domain function identified in the vesicular stomatitis virus M protein by use of rhabdovirus-retrovirus chimeras. J Virol 73:3359–3365

    PubMed  CAS  Google Scholar 

  • Dwyer EA (2000) The lymphocytic choriomeningitis virus RING protein Z associates with eukaryotic initiation factor 4E and selectively represses translation in a RING-dependent manner. J Virol 74:3293–3300

    Article  CAS  Google Scholar 

  • Farber FE, Rawls WE (1975) Isolation of ribosome-like structures from Pichinde virus. J Gen Virol 26:21–31

    Article  PubMed  CAS  Google Scholar 

  • Franze-Fernandez M-T, Zetina C, Iapalucci S, Lucero MA, Bouissou C, Lopez R, Rey O, Deheli M, Cohen GN, Zakin MM (1987) Molecular structure and early events in the replication of Tacaribe arenavirus S RNA. Virus Res 7:309–324

    Article  PubMed  CAS  Google Scholar 

  • Franze-Fernandez M-T, Iapalucci S, Lopez N, Rossi C (1993) Subgenomic RNAs of Tacaribe virus. In: Salvato MS (ed) The arenaviridae. Plenum, New York

    Google Scholar 

  • Fuerst TR, Niles EG, Studier FW, Moss B (1986) Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 83:8122–8126

    Article  PubMed  CAS  Google Scholar 

  • Fuller-Pace FV, Southern PJ (1989) Detection of virus-specific RNA-dependent RNA polymerase activity in extracts from cells infected with lymphocytic choriomeningitis virus: in vitro synthesis of full-length viral RNA species. J Virol 63:1938

    PubMed  CAS  Google Scholar 

  • Garcia-Sastre A, Palese P (1993) Genetic manipulation of negative-strand RNA virus genomes. Annu Rev Microbiol 47:765–790

    Article  PubMed  CAS  Google Scholar 

  • Garcin D, Kolakofsky D (1990) A novel mechanism for the initiation of Tacaribe arenavirus genome replication. J Virol 64:6196–6203

    PubMed  CAS  Google Scholar 

  • Garcin D, Kolakofsky D (1992) Tacaribe arenavirus RNA synthesis in vitro is primer dependent and suggests an unusual model for the initiation of genome replication. J Virol 66:1370–1376

    PubMed  CAS  Google Scholar 

  • Garcin D, Rochat S, Kolakofsky D (1993) The Tacaribe arenavirus small zinc finger protein is required for both mRNA synthesis and genome replication. J Virol 67:807–812

    PubMed  CAS  Google Scholar 

  • Garoff H, Hewson R, Opstelten DJE (1998) Virus maturation by budding. Microbiol Mol Biol Rev 62:1171–1190

    PubMed  CAS  Google Scholar 

  • Gliden DH, Cole GA, Monjan AA, Nathanson N (1972a) Immunopathogenesis of acute central nervous system disease produced by lymphocytic choriomeningitis virus. I. Cyclophosphamide-mediated induction by the virus-carrier state in adult mice. J Exp Med 135:860–873

    Article  Google Scholar 

  • Gliden DH, Cole GA, Nathanson N (1972b) Immunopathogenesis of acute central nervous system disease produced by lymphocytic choriomeningitis virus. II. Adoptive immunization of virus carriers. J Exp Med 135:874–889

    Article  Google Scholar 

  • Harty RN, Paragas J, Sudol M, Palese P (1999) A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. J Virol 73:2921–2929

    PubMed  CAS  Google Scholar 

  • Horikami SM, Smallwood S, Moyer SA (1996) The Sendai virus V protein interacts with the NP protein to regulate viral genome RNA replication. Virology 222:383–390

    Article  PubMed  CAS  Google Scholar 

  • Iapalucci S, Lopez N, Rey O, Zakin MM, Cohen GN, Franze-Fernandez M-T (1989a) The 5’ region of Tacaribe virus L RNA encodes a protein with a potential metal binding domain. Virology 173: 357–361

    Article  CAS  Google Scholar 

  • Iapalucci S, Lopez R, Rey O, Lopez N, Franze-Fernandez M-T (1989b) Tacaribe virus L gene encodes a protein of 2210 amino acid residues. Virology 170:40–47

    Article  CAS  Google Scholar 

  • Jahrling PB, Peters CJ (1992) Lymphocytic choriomeningitis virus: a neglected pathogen of man. Arch Pathol Lab Med 116:486–88

    PubMed  CAS  Google Scholar 

  • Jayakar HR, Murti KG, Whitt MA (2000) Mutations in the PPPY motif of vesicular stomatitis virus matrix protein reduce virus budding by inhibiting a late step in virion release. J Virol 74: 9818–9827

    Article  PubMed  CAS  Google Scholar 

  • Lai MM (1998) Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244:1–12

    Article  PubMed  CAS  Google Scholar 

  • Lee KJ, Novella IS, Teng MN, Oldstone MBA, Torre JC de la (2000) NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol 74:3470–3477

    Article  PubMed  CAS  Google Scholar 

  • Luytjes W, Krystal M, Enami M, Pavin JD, Palese P (1989) Amplification, expression, and packaging of foreign gene by influenza virus. Cell 59:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Mannweiler K, Lehmann-Grube F (1973) Electron microscopy of LCM virus-infected L cells. In: Lehmann-Grube F (ed) Lymphocytic choriomeningitis virus and other arenaviruses. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Mebatsion T, Konig M, Conzelmann KK (1996) Budding of rabies virus particles in the absence of the spike glycoprotein. Cell 84:941–951

    Article  PubMed  CAS  Google Scholar 

  • Meyer BJ, Southern PJ (1993) Concurrent sequence of analysis of 5’ and 3’ RNA termini by intramolecular circularization reveals 5’ nontemplated bases and 3’ terminal heterogeneity for lymphocytic choriomeningitis virus mRNAs,. J Virol 67:2621–2627

    PubMed  CAS  Google Scholar 

  • Meyer BJ, Southern PJ (1994) Sequence heterogeneity in the termini of lymphocytic choriomeningitis virus genomic and antigenomic RNAs. J Virol 68:7659–7664

    PubMed  CAS  Google Scholar 

  • Meyer BJ, Southern PJ (1997) A novel type of defective viral genome suggests a unique strategy to establish and maintain persistent lymphocytic choriomeningitis virus infections. J Virol 71:6757–6764

    PubMed  CAS  Google Scholar 

  • Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, Hobom G, Kawaoka Y (1999) Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci USA 96:9345–9350

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA (1975) Virus neutralization and virus-induced immune complex disease. Virus-antibody union resulting in immunoprotection or immunologic injury — two sides of the same coin. Prog Med Virol 19:84–119

    PubMed  CAS  Google Scholar 

  • Oldstone MBA (1998) Viral persistence: mechanisms and consequences. Curr Opin Microbiol 1:436–441

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA, Dixon FJ (1967) Lymphocytic choriomeningitis: production of antibody by ‘tolerant’ infected mice. Science 158:1193–1195

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA, Dixon FJ (1969) Pathogenesis of chronic disease associated with persistent lymphocytic choriomeningitis viral infection. I. Relationship of antibody production to disease in neonatallyinfected mice. J Exp Med 129:483–505

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA, Sinha YN, Blout P, Tishon A, Rodriguez M, Wedel R von, Lampert PW (1982) Virusinduced alterations in homeostasis: alterations in differentiated functions of infected cells in vivo. Science 218:1125–1127

    Article  PubMed  CAS  Google Scholar 

  • Pattnaik AK, Ball LA, LeGrone AW, Wertz GW (1992) Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell 69:1011–1020

    Article  PubMed  CAS  Google Scholar 

  • Pedersen IR (1979) Structural components and replication of arenaviruses. Adv Virus Res 24:277–330

    Article  PubMed  CAS  Google Scholar 

  • Perrota AT, Been MD (1999) The self-cleaving domain from the genomic RNA of hepatitis delta virus: sequence requirements and the effects of denaturant. Nucleic Acid Res 18:6821

    Article  Google Scholar 

  • Peters CJ, Buchmeier MB, Rollin PE, Ksiazek TG (1996) Arenaviruses. In: Fields BW, Knipe DM, Howley DM, et al. (eds) Fields virology, 3rd edn.

    Google Scholar 

  • Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dotsch C, Christiansen G, Billeter MA (1995) Rescue of measles viruses from cloned DNA. EMBO J 14:5773–5784

    PubMed  CAS  Google Scholar 

  • Raju R, Raju L, Hacker D, Garcin D, Compans RW, Kolakofsky D (1990) Nontemplated bases at the 5’ ends of Tacaribe virus mRNAs. Virology 174:53–59

    Article  PubMed  CAS  Google Scholar 

  • Roberts A, Rose JK (1998) Recovery of negative-strand RNA viruses from plasmid DNAs: a positive approach revitalizes a negative field. Virology 247:1–6

    Article  PubMed  CAS  Google Scholar 

  • Robison CS, Whitt MA (2000) The membrane-proximal stem region of vesicular stomatitis virus G protein confers efficient virus assembly. J Virol 74:2239–2246

    Article  PubMed  CAS  Google Scholar 

  • Romanowski V, Matsuura Y, Bishop DHL (1985) Complete sequence of the S RNA of lymphocytic choriomeningitis virus (WE strain) compared to that of Pichinde arenavirus. Virus Res. 3:101–114

    Article  PubMed  CAS  Google Scholar 

  • Rowe WP (1954) Naval Medical Research Institute Report, Vol 12. National Naval Medical Center, Bethesda, pp 167–220

    Google Scholar 

  • Salvato M, Shimomaye EM, Oldstone MBA (1989) The primary structure of the lymphocytic choriomeningitis virus L gene encodes a putative RNA polymerase. Virology 169:377–384

    Article  PubMed  CAS  Google Scholar 

  • Salvato MS (1993) Molecular biology of the prototype arenavirus, lymphocytic choriomeningitis virus. In: Salvato MS (ed) The arenaviridae. Plenum, New York

    Chapter  Google Scholar 

  • Salvato MS, Shimomaye EM (1989) The completed sequence of lymphocytic choriomeningitis virus reveals a unique RNA structure and a gene for a zinc finger protein. Virology 173:1–10

    Article  PubMed  CAS  Google Scholar 

  • Salvato MS, Schweighofer KJ, Burns J, Shimomaye EM (1992) Biochemical and immunological evidence that the 11-kDa zinc-binding protein of lymphocytic choriomeningitis virus is a structural component of the virus. Virus Res 22:185–198

    Article  PubMed  CAS  Google Scholar 

  • Schnell M, Mebatsion T, Conzelmann KK (1994) Infectious rabies viruses from cloned cDNA. EMBO J 13:4195–4203

    PubMed  CAS  Google Scholar 

  • Singh MK, Fuller-Pace FV, Buchmeier MJ, Southern PJ (1987) Analysis of genomic L RNA segment of lymphocytic choriomeningitis virus. Virology 161:448–56

    Article  PubMed  CAS  Google Scholar 

  • Southern PJ, Singh MK, Riviere Y, Jacoby DR, Buchmeier MJ, Oldstone MBA (1987) Molecular characterization of the genomic S RNA segment from lymphocytic choriomeningitis virus. Virology 157:145–155

    Article  PubMed  CAS  Google Scholar 

  • Sudol M, Bork P, Einbond A, Kastury K, Druck T, Negrini M, Huebner K, Lehman D (1995) Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J Biol Chem 270:14733–14741

    Article  PubMed  CAS  Google Scholar 

  • Tordo N, DeHaan P, Goldbach R, Poch O (1992) Evolution of negative-stranded RNA genomes. Semin Virol 3:341–357

    CAS  Google Scholar 

  • Torre JC de la, Oldstone MBA (1996) The anatomy of viral persistence: mechanisms of persistence and associated disease. Adv Virus Res 46:311–343

    Article  PubMed  Google Scholar 

  • Wills JW, Cameron CE, Wilson CB, Xiang Y, Bennett RP, Leis J (1994) An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J Virol 68:6605–6618

    PubMed  CAS  Google Scholar 

  • Wright KE, Spiro RC, Burns JW, Buchmeier MJ (1990) Post-translational processing of the glycoproteins of lymphocytic choriomeningitis virus. Virology 177:175–183

    Article  PubMed  CAS  Google Scholar 

  • Xiang Y, Cameron CE, Wills JW, Leis J (1996) Fine mapping and characterization of the Rous sarcoma virus Pr76gag late assembly domain. J Virol 70:5695–5700

    PubMed  CAS  Google Scholar 

  • Young PR, Howard CR (1983) Fine structure of Pichinde virus nucleocapsids. J Gen Virol 64:833–842

    Article  PubMed  Google Scholar 

  • Zinkernagel RM, Doherty PC (1974a) Immunologic surveillance against altered self components by sensitized T lymphocytes in lymphocytic choriomeningitis. Nature 251:547–548

    Article  CAS  Google Scholar 

  • Zinkernagel RM, Doherty PC (1974b) Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248:701–702

    Article  CAS  Google Scholar 

  • Zinkernagel RM, Doherty PC (1979) MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction specificity, function, and responsiveness. Adv Immunol 27:51–177

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, K.J., De La Torre, J.C. (2002). Reverse Genetics of Arenaviruses. In: Oldstone, M.B.A. (eds) Arenaviruses I. Current Topics in Microbiology and Immunology, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56029-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56029-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42244-0

  • Online ISBN: 978-3-642-56029-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics