Skip to main content

The Effect of Fractures on the Reclamation of NAPL Contaminated Aquifers

  • Chapter
Water Resources Quality

Abstract

This study concerns the dissolution of nonaqueous phase liquid entrapped in fractured permeable formation. The study assesses controlling factors for pumpand-treat reclamation. The mathematical formulation is based upon a simplified conceptual model of a fractured permeable formation, in which the NAPL is assumed to be entrapped as ganglia (blobs) in the permeable blocks. Parametric analysis indicates that two dimensionless parameters govern the rate of dissolution of the NAPL and the transport of the dissolved solute: (1) the interphase mass transfer coefficient, and (2) the mobility number. Restoration of a hypothetical NAPL-contaminated fractured permeable formation is simulated. Results show that the presence of fractures significantly changes the characteristics of the aquifer reclamation process. At high values of the dimensionless interphase mass transfer coefficient, NAPL dissolution significantly deviates from the behavior of a continuum. Effects of variability of the aquifer flow rate and surfactant additives on characteristics of the aquifer cleanup are studied. Options for the enhancement of aquifer reclamation by increasing the aquifer flow rates and surfactant additives are quantitatively evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abriola LM, Dekker TJ, Pennel KD (1993) Surfactant-enhanced solubilization of residual dodecane in soil columns: 2 Mathematical modeling. Environ Sci Technol 27(12):23412351

    Article  Google Scholar 

  • Abriola LM, Pennel KD, Pope GA, Dekker TJ, Luning-Prak DJ (1995) Impact of surfactant flushing on the solubilization and mobilization of dense nonaqueous-phase liquids. IN: Sabatini DA et al. (eds) Surfactant-enhanced subsurface remediation emerging technologies. ACS Symp Ser 594. American Chemical Society, Washington, DC

    Google Scholar 

  • Anderson MR, Johnson RL, Pankow JF (1992a) Dissolution of dense chlorinated solvents into groundwater. 1. Dissolution from a well-defined source. Ground Water 30(2):250256

    Article  Google Scholar 

  • Anderson MR, Johnson RL, Pankow JF (1992b) Dissolution of dense chlorinated solvents into groundwater. 3. Modeling contaminant plumes from fingers and pools of solvent. Environ Sci Technol 26(5):901–907

    Article  CAS  Google Scholar 

  • Andres G, Georgotas N (1978) Hydrologische Studien zum Grundwasserhaushalt and zur Stoffbilanz im Maineinzugsgebiet. Schriftenreihe Bayr Landesamt f¨r Wasserwirtschaft, M¨nchen

    Google Scholar 

  • Averbach Y (1988) Analysis of pumping tests of Barka 1 well. Tahal ¡ª water planning of Israel, Tel-Aviv

    Google Scholar 

  • Barenblatt GI, Zheltov YP, Kochina IN (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. PMM-Sov Appl Math Mech 852–864

    Google Scholar 

  • Berkowitz B, Bear J, Braester C (1988) Continuum models for contaminant transport infractured porous formations. Water Resour Res 24(8):1225–1236

    Article  CAS  Google Scholar 

  • Birkhölzer J (1994) Numerische Untersuchungen zur Mehrkontinuums- Modellierung von Stofftransportvorgängen in Kluftgrundwasserleitern. Eigenverlag, Aachen (Technische Hochschule Aachen ¡ª Lehrstuhl and Institut f¨r Wasserbau and Wasserwirtschaft: Mitteilungen 93)

    Google Scholar 

  • Birkhölzer J, Rubin H, Daniels H, Rouv¨¨ G (1993a) Contaminant transport in fractured permeable formation. 1. Parametric evaluation and analytical solution. J Hydrol 144:133

    Google Scholar 

  • Birkhölzer J, Rubin H, Daniels H, Rouv¨¨ G (1993b) Contaminant transport in fractured permeable formation. 1. Numerical solution. J Hydrol 144:35–58

    Article  Google Scholar 

  • Brown CL, Pope GA, Abriola LM, Sepehrnoori K (1994) Simulation of surfactant-enhanced aquifer remediation. Water Resour Res 30(11):2959–2977

    Article  CAS  Google Scholar 

  • Brusseau ML (1992) Rate-limited mass transport of organic solutes in porous media that contain immobile immiscible organic liquid. Water Resour Res 28(1):33–45

    Article  CAS  Google Scholar 

  • Chatiz I, Morrow NR, Lim HT (1983) Magnitude and detailed structure of residual oil saturation. Soc Pet Eng J April: 311–326

    Google Scholar 

  • DeZabala EF, Radke CJ (1986) A non-equilibrium description of alkaline water flooding. Soc Pet Eng J 26(1):29–43

    Google Scholar 

  • Faust CR (1985) Transport of immiscible fluids within and below the unsaturated zone ¡ª a numerical model. Water Resour Res 21(4):587–596

    Article  Google Scholar 

  • Gvirtzman H, Magaritz M, Kanfi Y, Carmi I (1988) Matrix and fissure water movement through unsaturated calcareous sandstone. Transport Porous Media 3:343–356

    Article  CAS  Google Scholar 

  • Haldeman WR, Chuang Y, Rasmussen TC, Evans DD (1991) Laboratory analysis of fluid flow and solute transport through a fracture embedded in porous tuff. Water Resour Res 27(1):53–65

    Article  CAS  Google Scholar 

  • Hatfield K, Stauffer TB (1993) Transport in porous media containing residual hydrocarbon. 1. Model. ASCE J Environ Eng 119(3):540–558

    Article  CAS  Google Scholar 

  • Imhoff PT, Jaffe PR, Pinder GF (1993) An experimental study of complete dissolution of anonaqueous phase liquid in saturated porous media. Water Resour Res 30(2):307–320

    Article  Google Scholar 

  • Kanfi Y (1986) Groundwater contamination by oil in the coastal plain aquifer of Israel. Ministry of Agriculture, Water Commission, Tel-Aviv

    Google Scholar 

  • Larson RG, Davis HT, Scriven LE (1981) Displacement of residual nonwetting fluid from porous media. Chem Eng Sci 36:75–85

    Article  CAS  Google Scholar 

  • Mackay DM, Roberts PV, Cherry JA (1985) Transport of organic contaminants in groundwater. Environ Sci Technol 19(5):384–392

    Article  CAS  Google Scholar 

  • Mercer JW, Cohen RM (1990) A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J Contam Hydrol 6:107–163

    Article  CAS  Google Scholar 

  • Miller CT, Poirier-McNeill MM, Mayer AS (1990) Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics. Water Resour Res 26:2783–2796

    Article  Google Scholar 

  • National Research Council (1994) Alternatives for ground water cleanup. National Academy Press, Washington, DC

    Google Scholar 

  • Pennel KD, Abriola LM (1998) Surfactant-enhanced aquifer remediation: fundamental processes and practical application. In: Sikdar KK, Irvine RL (eds) Bioremediation: principles and practice, vol 1. Technomic Publ, Lancaster, PA, pp 693–750

    Google Scholar 

  • Pennel KD, Abriola LM, Weber WJ (1993) Surfactant-enhanced solubilization of residual dodecane in soil columns. 1 Experimental investigation. Environ Sci Technol 27(12):2232–2240

    Article  Google Scholar 

  • Pennel KD, Jin M, Abriola LM, Pope GA (1994) Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene. J Contam Hydrol 16(10):35–53

    Article  Google Scholar 

  • Pennel KD, Pope GA, Abriola LM (1996) Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Envion Sci Technol 30(4):1328–1335

    Article  Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone. Springer, New York

    Book  Google Scholar 

  • Powers SE, Loureiro CO, Abriola LM, Weber WJ Jr (1991) Theoretical study of the significance of nonequilibrium dissolution of nonaqueous phase liquids in subsurface systems. Water Resour Res 27(4):463–477

    Article  CAS  Google Scholar 

  • Powers SE, Abriola LM, Weber WJ Jr (1992) An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: steady-state mass transfer rates. Water Resour Res 28(10):2691–2706

    Article  CAS  Google Scholar 

  • Powers SE, Abriola LM, Weber WJ Jr (1994) An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: transient mass transfer rates. Water Resour Res 30(2):321–332

    Article  CAS  Google Scholar 

  • Rathfelder KM, Abriola LM, Taylor TP, Pennel KD (2001) Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses: 2 Numerical simulation. J Contam Hydrol 48(3–4):351–374

    Article  CAS  Google Scholar 

  • Rubin H, Rathfelder K, Abriola LM (1997) Modeling quasi-steady NAPL dissolution in permeable fractured media. ASCE J Environ Eng 123(3):205–216

    Article  CAS  Google Scholar 

  • Rubin H, Braester C (2000) Field measurements, laboratory tests, and theoretical analysis of oil contamination in the coastal plain aquifer of Israel. Dept of Civil Eng, Technion, Haifa, Israel

    Google Scholar 

  • Rubin H, Zoller U, Dveyrin D (2000) Evaluation of surfactant efficiency in remediation of NAPL contaminated soils. Water Sci Technol 42(1–2):325–330

    CAS  Google Scholar 

  • Sabatini DA, Nox RC, Harwell JH, Shiau BJ (1998) Surfactant-enhanced NAPL remediation: From the laboratory to the field. In: Rubin H, Narkis N, Carberry J (eds) Soil and aquifer pollution ¡ª non-aqueous phase liquids ¡ª contamination and remediation, Springer, Berlin Heidelberg New York, pp 373–391

    Google Scholar 

  • Schwille F (1981) Migration of organic fluids immiscible with water in the unsaturated zone. In: Yaron B et al. (eds) Pollutants in porous media, Springer, Berlin, Heidelberg New York, pp 27–28

    Google Scholar 

  • Schwille F (1988) Dense chlorinated solvents in porous and fractured media. (translated by Pankow JF). Lewis, Chelsea, Michigan

    Google Scholar 

  • Sudicky EA, McLaren RG (1992) The Laplace transform Galerkin technique for large-scale simulation of mass transport in discretely fractured porous formations. Water Resour Res 28:499–514

    Article  CAS  Google Scholar 

  • Zaidel J, Russo D (1993) Analytical models of steady state organic species transport in the vadose zone with kinetically controlled volatilization and dissolution. Water Resour Res 29(10):3343–3356

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rubin, H., Rathfelder, K., Abriola, L.M., Spiller, M., Demny, G., Köngeter, J. (2002). The Effect of Fractures on the Reclamation of NAPL Contaminated Aquifers. In: Rubin, H., Shamir, U., Nachtnebel, P., Fürst, J. (eds) Water Resources Quality. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56013-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56013-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62775-0

  • Online ISBN: 978-3-642-56013-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics