Skip to main content

Die mikrobiologische Gefährdung von Lebensmitteln und ihre Vermeidung

  • Chapter
Haltbarmachen von Lebensmitteln
  • 232 Accesses

Zusammenfassung

Durch Mikroorganismen verderben vor allem Frischlebensmittel. Der Zweck der Haltbarmachungsverfahren besteht bevorzugt darin, Mikroorganismen entweder abzutöten oder sie in einen solchen Zustand zu versetzen, dass sie sich nicht oder nicht über das zulässige Maß hinaus vermehren können. Lebensmittelvergiftungen durch Mikroorganismen muss durch Hygienemaßahmen vorgebeugt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alimenta 2 (1974) 1

    Google Scholar 

  2. Lee A (1978) What constitutes an infective dose of a food poisening organism. Food Technol Australia 30:332–335

    Google Scholar 

  3. Mossel DAA, Microbiology of Foods, Utrecht; Faculty of Veterinary Medicine 1977 (mit über 2000 Literaturstellen)

    Google Scholar 

  4. WHO Expert Commitee: Microbiological Aspects of Food Hygiene. Techn Rep, Series 598, Geneva: World Health Organisation 1976

    Google Scholar 

  5. Sinell H-J, Einführung in die Lebensmittelhygiene. 2. Aufl. Berlin u. Hamburg: P. Parey 1985

    Google Scholar 

  6. Krämer J, Lebensmittel-Mikrobiologie. Stuttgart: Ulmer 1987

    Google Scholar 

  7. Kunz B, Grundriß der Lebensmittelmikrobiologie. Hamburg: Behr 1988

    Google Scholar 

  8. FAO/WHO (1976) Techn Rep 598, Genf

    Google Scholar 

  9. Concon JM (1988) Toxicology. Part B. New York: Marcel Dekker Inc: 677–1001

    Google Scholar 

  10. Reiß J. Mykotoxine in Lebensmitteln. Stuttgart-New York: Fischer 1981

    Google Scholar 

  11. Taniwiki MH et al. (1992) Migration of patulin in apples. J Food Prot 55:902–904

    Google Scholar 

  12. Schindler PRG (1984) Fäkale Verunreinigung von Trinkwasser. Bundesgesundheitsblatt 27:302–305

    Google Scholar 

  13. Cann DC et al. (1988) The control of the botulism hazard in hot smoked trout and mackerel. Zitiert nach Hackney CR and A Dicharry: Seefood-borne bacterial pathogenes of maritim origin. Food Technol 42:4,188

    Google Scholar 

  14. Faber JM, Brown BC (1990) Effect of prior heat shock on heat resistance of Listeria monocytogenes. Meat Appl and Environment Microbiol 56:1584–1587

    Google Scholar 

  15. McLean et al. (1986) J Bacteriol 95:1207

    Google Scholar 

  16. Petran RL, Zottola EA (1989) A study of factors affecting growth and recovery of Listeria monocytogenes Scott A. J Food Sci 54:458–460

    Article  CAS  Google Scholar 

  17. Sperber WH (1983) Influence of water activity on foodborne bacteria — A Review. J Food Protection 46:142

    CAS  Google Scholar 

  18. Bullerman LB et al. (1984) Formation and control of mycotoxins in food. J Food Protect 47:637–644, sowie Bullerman LB (1985) Interactive effects of temperature and pH on mycotoxin production. Lebensm-Wissensch + Technol 18:197-200

    CAS  Google Scholar 

  19. Ismaiel A, Pierson MD (1990) Inhibition of growth and germination of CI. Botulinum 33 A, 40 B and 1623 E by essential oil of spices. J Food Sci 55:1676–1678

    Article  Google Scholar 

  20. Faber JM (1993) Current research on Listeria monocytogenes on food: An overview. J Food Prot 56:640–643

    Google Scholar 

  21. Heffnawy YA et al. (1993) Sensitivity of L. monocytogenes to selected spices. J Food Prot 56:876–878

    Google Scholar 

  22. Harder u Veldkamp (1971) aus Ingram et al.: Inhibition and Inactivation of Vegetative Microbes. London: Academic Press 1976, p 130

    Google Scholar 

  23. Greene VW, Jezeskri JJ (1954) Appl Microbiol 2:110

    CAS  Google Scholar 

  24. Buske FF (1983) Bacterial spore resistance to acid. Food Technol 37:89–99

    Google Scholar 

  25. Genigeneorges CA (1989) Present state of knowledge on Staphylococcal intoxication. Int J Food Microbiol 9:327–360

    Article  Google Scholar 

  26. Sand EMJ (1970) Brauwelt 110:225

    Google Scholar 

  27. Microbial Ecology of Foods (1980) New York: Academic Press 1:101

    Google Scholar 

  28. Christian JHB u. nach Scott WJ (1965) Austr J Biol Sci 6:565–573; (1955) 8:490-497 and Adv Food Res (1957) 7:83-127

    Google Scholar 

  29. Kaplow M (1970) Commercial development of intermediate moisture foods. Food Technol 24:889–893

    Google Scholar 

  30. Troller JA (1979) Food spoilage by microorganisms tolerating low a w-environments. Food Technol 33:72–76

    Google Scholar 

  31. Troller JA, Christian JHB, Water Activity and Food. New York, San Francisco, London: Academic Press 1978, Appendix A and B, pp 214–216

    Google Scholar 

  32. Microbial Ecology of Foods (1980) New York: Academic Press 1:79–80

    Google Scholar 

  33. Northolt et al. (1982) Prevention of mold growth and toxin production through control of environmental conditions. J Food Protect 45:520

    Google Scholar 

  34. Monsch MH et al. (1987) Equations for sorption curves of some humectants. Lebensm Wiss u Technol 20:320–322

    Google Scholar 

  35. Robinson RA, Stokes RH, Electrolytic Solutions. New York: Academic Press 1959

    Google Scholar 

  36. Bean PG, Roberts TA, The effect of pH, NaCl and NaNO2 on heat resistance of staphylococcus aureus and growth of damaged cell in laboratory media. Proc IV Int Congr Food Sci and Technol Vol III, S 93–102

    Google Scholar 

  37. Roberts TA, Ingram M (1973) Inhibition of growth of CI. Botul. at different pH-values by sodium chloride and sodium nitrite. J Food Technol 8:467–475, sowie Ingram M (1977) Probleme bei der Verwendung von Nitrit. Fleischwirtschaft 31:212-217

    Article  CAS  Google Scholar 

  38. OVERVIEW on botulism. Food Technol (1982) 36:87–118

    Google Scholar 

  39. Perigo JA, Roberts TA (1968) Inhibition of Clostridia by nitrite. J Food Technol 3:91–94

    Article  Google Scholar 

  40. Buchanan RL et al. (1989) Effects and interactions of temperature, pH-value, atmosphere, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes. J Food Prot 52:849

    Google Scholar 

  41. Zaika LL et al. (1991) Effect of sodium nitrite on growth of shigella flexeri. J Food Prot 54:424–428

    CAS  Google Scholar 

  42. Uzelac G, Stille B (1977) Die Überlebensfähigkeit von Bakterien fäkalen Ursprungs in Abhängigkeit von der Wasseraktivität. Deutsche Lebensm Rdsch 73:325–329

    Google Scholar 

  43. Scott VN (1989) Interaction of factors to control microbial spoilage of refrigerated food. J Food Prot 53:431–493

    Google Scholar 

  44. Microbial Ecology of Foods (1980) New York: Academic Press 1:219

    Google Scholar 

  45. Sperber WH (1983) Influence of water activity on foodborne bacteria — a review. J of Food Protect 46:142–150

    CAS  Google Scholar 

  46. Alzamora SM, Chirife J (1983) The water activity of canned foods. J Food Sci 48:1385–1387

    Article  CAS  Google Scholar 

  47. Leistner L, Rödel W, The significance of water activity for microorganisms in meat. In: Water Relations of Foods. New York: Academic Press 1975

    Google Scholar 

  48. Scott VN (1989) Interaction of factors to control microbial spoilage of refrigerated foods. J Food Protect 52:431–435

    Google Scholar 

  49. Pierson MD et al. (1970) Microbiological, sensory and pigment changes of aerobically and anaerobically packaged beef. Food Technol 24:129–132

    Google Scholar 

Überblicksliteratur

  • Perigo JA (1966) Inst of Pack J 12:10,18,34

    Google Scholar 

  • Schmidt-Lorenz W, Behavior of microorganisms at low temperatures. Bull de l’lnst internat du Froid.No land 2,1967

    Google Scholar 

  • Schmidt-Lorenz W, Gutschmidt J (1968) Mikrobiologische und sensorische Veränderungen gefrorener Lebensmittel. Lebensm Wissensch u Technol 1:26–43

    Google Scholar 

  • Mossel AA (1969) Nahrungsmittel als Umwelt für Mikroorganismen, die Lebensmittel gesundeitsschädlich machen. Alimenta 8:8

    Google Scholar 

  • Bensink JC, Cleaning and sanitation working parties CSIRO 1970/71, pp 3–14

    Google Scholar 

  • Corlett DA (1974) Setting microbiological limits in the food industry. Food Technol 28:37

    Google Scholar 

  • Frazier WC, Westhoff DC, Food Microbiology. New York: McGraw-Hill 1978

    Google Scholar 

  • Frank H, In: Berg, Diehl, Frank (Hrsg) Rückstände und Verunreinigungen in Lebensmitteln. Darmstadt: Steinkopff 1978

    Google Scholar 

  • Schmidt-Lorenz W (1979) Mikrobiologisch-hygienische Anforderungen an die küchentechischen Erhitzungs-und Kühlverfahren. Swiss Food 1:27–41

    Google Scholar 

  • Ayres JC, Mundt JO, Sandine WE, Microbiology of Foods. San Francisco: Freeman 1980 Internat Commission on Microbiol Spec for Foods: Factors Affecting Life and Death of Microrganisms. New York-London-Toronto-Sydney-San Francisco: Academic Press 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heiss, R., Eichner, K. (2002). Die mikrobiologische Gefährdung von Lebensmitteln und ihre Vermeidung. In: Haltbarmachen von Lebensmitteln. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56010-1_4

Download citation

Publish with us

Policies and ethics