Skip to main content

On the Optimal Number of Clusters in Histogram Clustering

  • Conference paper
Classification, Automation, and New Media
  • 368 Accesses

Abstract

Clusters in data clustering should be robust to sample fluctuation, i.e., the estimate of cluster parameters on a second sample set should yield qualitatively similar results. This robustness requirement can be quantified by large deviation arguments from statistical learning theory. We use the principle of Empirical Risk Approximation to determine an optimal number of clusters for the case of histogram clustering. The analysis validates stochastic approximation algorithms like Markov Chain Monte Carlo which maximize the entropy for fixed optimization costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Duda, R.O. and Hart, P.E. (1973): Pattern Classification and Scene Analysis. Wiley, New York.

    MATH  Google Scholar 

  • De Bruijn, N.G.(1958): Asymptotic Methods in Analysis. North-Holland Publishing Co., (repr. Dover), Amsterdam.

    MATH  Google Scholar 

  • Hofmann, T. and Puzicha, J. (1998): Statistical models for co-occurrence data. AI-MEMO 1625, Artifical Intelligence Laboratory. Massachusetts Institute of Technology.

    Google Scholar 

  • Pereira, F.C.N., Tishby, N.Z. and Lee, L (1993): Distributional clustering of english words. In 30th Annual Meeting of the Association for Computational Linguistics, Columbus, Ohio, pages 183–190.

    Google Scholar 

  • Puzicha, J., Hofmann, T. and Buhmann, J.M. (1999): Histogram Clustering for Unsupervised Segmentation and Image Retrieval. Pattern Recognition Letters, 20, 135–142.

    Article  Google Scholar 

  • Van Der Vaart, A.W. and Wellner, J.A. (1996): Weak Convergence and Empirical Processes.Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Vapnik, V.N. and Chervonenkis, A.Ya. (1971): On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16, 264–280.

    Article  MATH  Google Scholar 

  • Vapnik, V. N. (1998): Statistical Learning Theory. Wiley-Interscience, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buhmann, J.M., Held, M. (2002). On the Optimal Number of Clusters in Histogram Clustering. In: Gaul, W., Ritter, G. (eds) Classification, Automation, and New Media. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55991-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55991-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43233-3

  • Online ISBN: 978-3-642-55991-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics