Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

We present a novel technique to ‘unfold’ the curved convoluted outer surface of the brain known as the cortex and map it onto a sphere. The mapping procedure is constructed by first measuring the inter geodesic distances between points on the cortical surface. Next, a multi-dimensional scaling (MDS) technique is applied to map the whole or a section of the surface onto the sphere. The geodesic distances on the cortex are measured by the ‘fast marching on triangulated domains’ algorithm. It calculates the geodesic distances from a vertex on a triangulated surface to the rest of the vertices in O(n) operations, where n is the number of vertices that represent the surface. Using this procedure, a matrix of the geodesic distances between every two vertices on the surface is computed. Next, a constrained MDS procedure finds the coordinates of points on a sphere such that the inter geodesic distances between points on the sphere are as close as possible to the geodesic distances measured between the corresponding points on the cortex. Thereby, our approach maximizes the goodness of fit of distances on the cortex surface to distances on the sphere. We apply our algorithm to sections of the human cortex, which is an extremely complex folded surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis. On the laplacebeltrami operator and brain surface flattening. IEEE Trans. on Medical Imaging, 18(8):700–711, August 1999.

    Article  Google Scholar 

  2. I. Borg and P. Groenen. Modern Multidimensional Scaling — Theory and Applications. Springer, 1997.

    Google Scholar 

  3. M. Cox and T. Cox. Multidimensional scaling on a sphere. Commun. Statist, 20(9):2943–2953, 1991.

    Article  Google Scholar 

  4. M. Cox and T. Cox. Multidimensional Scaling. Chapman and Hall, 1994.

    Google Scholar 

  5. C. Frederick and E. L. Schwartz. Confromal image warping. IEEE Trans. Pattern Anal. Machine Intell, 11(9):1005–1008, 1989.

    Article  Google Scholar 

  6. R. Grossman, N. Kiryati, and R. Kimmel. Computational surface flattening: A voxel-based approach. Lecture Notes in Computer Science, 2059:196–204, 2001.

    Article  Google Scholar 

  7. S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle. Conformal surface parameterization for texture mapping. IEEE Trans. on Visualization and Computer Graphics, 6:181–189, 2000.

    Article  Google Scholar 

  8. R. Kimmel and J. Sethian. Computing geodesic on manifolds. Proc. of National Academy of Science, 95:8431–8435, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Kruskal. Multidimensional scaling: anumerical method. Psychometrika, 36:57–62, 1964.

    Article  MathSciNet  Google Scholar 

  10. J. Kruskal. Multidimensional scaling by optimizinggoodness of-fit to a nonmetric hypothesis. Psychometrika, 29:1–27, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. B. Kruskal and M. Wish. Multidimensional Scaling. Sage, 1978.

    Google Scholar 

  12. S. Melax. A simple, fast and effective polygon reduction algorithm. Game Developer Journal, November 1998.

    Google Scholar 

  13. E. L. Schwartz, A. Shaw, and E. Wolfson. A numerical solution to the generalized mapmaker’s problem: Flattening nonconvex polyhedral surfaces. IEEE Trans. Pattern Anal. Machine Intell, 11(9):1005–1008, 1989.

    Article  Google Scholar 

  14. J. Sethian. A review of the theory, algorithms, and applications of level set method for propagating surfaces. Acta Numerica, Cambridge University Press, 1996.

    Google Scholar 

  15. J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans. on Automatic Control, 40:1528–1538, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. A. Wandell, S. Chial, and B. Backus. Visualization and measurements of the cortical surface. Journal of Cognitive Neuroscience, January 2000.

    Google Scholar 

  17. E. Wolfson and E. L. Schwartz. Computing minimal distances on arbitrary twodimensional polyhedral surfaces. IEEE Computer Graphics and Applications, 1990.

    Google Scholar 

  18. G. Zigelman and R. Kimmel. Texture mapping using surface flattening via MDS. Accepted to IEEE Trans. on Visualization and Computer Graphics, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elad, A., Kimmel, R. (2002). Spherical Flattening of the Cortex Surface. In: Malladi, R. (eds) Geometric Methods in Bio-Medical Image Processing. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55987-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55987-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62784-2

  • Online ISBN: 978-3-642-55987-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics