Skip to main content

Level Set Models for Analysis of 2D and 3D Echocardiographic Data

  • Chapter
Geometric Methods in Bio-Medical Image Processing

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

We propose a partial differential equation (PDE) for filtering and segmentation of echocardiographic images based on a geometric-driven scheme. The method allows edge-preserving image smoothing and a semi-automatic segmentation of the heart chambers, that regularizes the shapes and improves edge fidelity especially in presence of distinct gaps in the edge map as is common in ultrasound imagery. A numerical scheme for solving the proposed PDE is borrowed from level set methods. Results on human in vivo acquired 2D, 2D+time,3D, 3D+time echocardiographic images are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Adalsteinsson and J. A. Sethian: A fast level set method for propagating interfaces, in J. Comp. Phys., Vol. 118(2), pp. 269–277, May 1995.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel: Axioms and fundamental equations of image processing, Arch. Rational Mechanics 123, 1993.

    Google Scholar 

  3. W. Bommer, L. Weinert, A. Neumann, J. Neef, D. Mason, A. Demaria: Determination of right atrial and right ventricular size by two-dimensional echocardiography, Circulation, pp. 60–91 (1979)

    Google Scholar 

  4. V. Caselles, F. Catte. T. Coll, F. Dibos: A geometric model for active contours, Numerische Mathematik, Vol. 66, pp. 1–31, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Caselles, R. Kimmel, and G. Sapiro: Geodesic active contours, in Proc. ICCV’95, Cambridge, MA 1995.

    Google Scholar 

  6. L.D Cohen: On active contour models and balloons CVGIP:Image Understanding vol. 53, pag. 211–218.

    Google Scholar 

  7. I. Cohen, L.D Cohen, N. Ayache: Using deformable surfaces to segment 3D images and infer differential structure CVGIP:Image Understanding vol. 56, pag. 242–263.

    Google Scholar 

  8. M. Grayson: The heat equation shrinks embedded plane curves to round points, J. Differential Geometry 26, 1987, pp. 285–314.

    MathSciNet  MATH  Google Scholar 

  9. A. Handlovičo vá, K. Mikula, A. Sarti: Numerical solution of parabolic equations related to level set formulation of mean curvature flow, Computing and Visualization in Science (1998)

    Google Scholar 

  10. C. Lamberti, F. Sgallari: Edge detection and velocity field for the analysis of heart motion, Digital Signal Processing 91, Elsevier (Editors V. Cappellini, A.G. Costantinides) pp. 603–608 (1991)

    Google Scholar 

  11. W.E. Lorensen, H.E. Cline: Marching cubes: a high resolution 3D surface construction algorithm, Computer Graph., vol. 21, pp. 163–169 (1987)

    Article  Google Scholar 

  12. M. Kass, A. Witkin, D. Terzopoulos: Snakes: Active contour models, International Journal of Computer Vision, vol. 1, pp. 321–331, 1988

    Article  Google Scholar 

  13. R. Malladi, J.A. Sethian, B.C. Vemuri: A topology-independent shape modeling scheme, in SPIE: Geometric Methods in Computer Vision II, Vol. 2031, pp. 246–258, 1993.

    Google Scholar 

  14. R. Malladi, J. A. Sethian and B. C. Vemuri: Shape modeling with front propagation: A level set approach, IEEE Trans. on PAMI 17, 1995, pp. 158–175.

    Article  Google Scholar 

  15. R. Malladi and J. A. Sethian: Image processing: Flows under Min/Max curvature and mean curvature, in Graphical Models and Image Processing, Vol. 58(2), pp. 127–141, March 1996.

    Article  MathSciNet  Google Scholar 

  16. R. Malladi and J. A. Sethian: Level set methods for curvature flow, image enchancement, and shape recovery in medical images, in Visualization and Mathematics: Experiments, Simulations, and Environments, Eds. H. C. Hege, K. Polthier, pp. 329–345, Springer Verlag, Heidelberg, 1997.

    Google Scholar 

  17. R. Malladi and J. A. Sethian: A real-time algorithm for medical shape recovery, in Proceedings of ICCV’ 98, pp. 304–310, Mumbai India, January 1998.

    Google Scholar 

  18. K. Mikula, A. Sarti, C. Lamberti: Geometrical diffusion in 3D echocardiography, Proc. of ALGORITMY’ 97-Conference on Scientific Computing, West Tatra Mountains, Slovakia, 1997.

    Google Scholar 

  19. N. K. Nordstrom: Variational edge detection, PhD dissertation, Department of electrical engineering, University of California, Berkeley, 1990

    Google Scholar 

  20. S. J. Osher and J. A. Sethian: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics 79, 1988, pp. 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  21. Pini R, Giannazzo G, Di Bari M, Innocenti F, Rega L, Casolo G, and Devereux RB: Transthoracic three-dimensional echocardiographic reconstruction of left and right ventricles: In vitro validation and comparison with magnetic resonance imaging, American Heart Journal, 133: pp. 221–229, 1997.

    Article  Google Scholar 

  22. Pini R, Giannazzo G, Di Bari M, Innocenti F, Marchionni N, Gori A, and Devereux RB: Left ventricular volume determination by 3-D echocardiographic volume imaging and biplane angiography, Journal of Noninvasive Cardiology, 3, pp. 46–51, 1999.

    Google Scholar 

  23. Bart M. ter Haar Romeny (Ed.): Geometry-driven diffusion in computer vision, Kluwer Academic Press, 1994.

    Google Scholar 

  24. G. Sapiro: Color snakes, Hewlett-Packard Lab. tech report, 1995.

    Google Scholar 

  25. G. Sapiro, R. Kimmel, D. Shaked, B. B. Kimia, and A. M. Bruckstein: Implementing continuous-scale morphology via curve evolution, Pattern Recognition, Vol. 26(9), pp. 1363–1372, 1993.

    Article  Google Scholar 

  26. Sarti, A., Mikula, K., Sgallari, F.: Nonlinear multiscale analysis of 3D echocardiographic sequences. IEEE Transactions on Medical Imaging 18, No. 6 (1999) 453–466

    Article  Google Scholar 

  27. Sarti, A., Ortiz de Solorzano, C., Lockett, S. and Malladi, R.: A Geometric Model for 3-D Confocal Image Analysis. IEEE Transactions on Biomedical Engineering 45, No. 12, (2000), 1600–1610

    Google Scholar 

  28. Sarti, A., Malladi, R., Sethian, J.A.: Subjective Surfaces: A Method for Completing Missing Boundaries. Proceedings of the National Academy of Sciences of the United States of America, Vol 12, N.97, pag. 6258–6263, 2000.

    Article  MathSciNet  Google Scholar 

  29. Sarti, A., Malladi, R., Sethian, J.A.: Subjective Surfaces: A Geometric Model for Boundary Completion, submitted to International Journal of Computer Vision, 2000.

    Google Scholar 

  30. Sarti, A., Malladi, R.: A geometric level set model for ultrasounds analysis, LBNL-44442, University of California, Berkeley, 1999.

    Google Scholar 

  31. Sarti, A., Wiegmann, A.: Edges are image discontinuities-fast edge enhancement based on explicit-jump multiscale analysis, LBNL-42373, University of California, Berkeley, 1999.

    Google Scholar 

  32. J. A. Sethian: A review of recent numerical algorithms for hypersurfaces moving with curvature dependent flows, J. Differential Geometry 31, 1989, pp. 131–161.

    MathSciNet  Google Scholar 

  33. J. A. Sethian: Level set methods: Evolving interfaces in geometry, fluid mechanics, computer vision, and material science, Cambridge University Press, 1997.

    Google Scholar 

  34. W. Shroeder, K. Martin, B. Lorensen: The visualization Toolkit, Prentice Hall PTR., New Jersey (1996)

    Google Scholar 

  35. S. Shutilov: Fundamental Physics of Ultrasounds, Gordon and Breach, New York, 1988

    Google Scholar 

  36. N. Sochen, R. Kimmel, and R. Malladi: A General Framework for Low Level Vision, in IEEE Transactions on Image Processing, special issue on PDEs and Geometry-Driven Diffusion in Image Processing and Analysis, Vol. 7, No. 3, pp. 310–318, March 1998.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarti, A., Lamberti, C., Malladi, R. (2002). Level Set Models for Analysis of 2D and 3D Echocardiographic Data. In: Malladi, R. (eds) Geometric Methods in Bio-Medical Image Processing. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55987-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55987-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62784-2

  • Online ISBN: 978-3-642-55987-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics