Melt Blowing pp 147-159 | Cite as

PFM as Carriers of Microorganisms

  • L. S. Pinchuk
  • V. A. Goldade
  • A. V. Makarevich
  • V. N. Kestelman
Part of the Springer Series in Materials Processing book series (SSMATERIALSPROC)


A present trend in industrial technologies is the growing role of catalytic biotechnological systems, in particular, systems for biologically cleaning air and water by employing of biologically active polymer materials (BAPM). The functional mechanisms of these materials (where a high molecular weight matrix is the carrier of live cells of microorganisms, plants, animals, or men) are governed by the metabolism of immobilized cell cultures under given conditions. The rapid widening of the BAPM range in recent decades can be attributed to the strengthening of the biotechnology sectors in a number of the vital domains of economy, including fine organic synthesis, the pharmacentical and food industries, medicine, agriculture, and industrial ecology [1].


Electron Paramagnetic Resonance Chemical Oxygen Demand Ring Zone Benzyl Acetate Methyl Isobutyl Ketone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Chapter 10

  1. 1.
    A. Sasson. Biotechnologies: Changes and Promises, 2nd ed. Paris, UNESCO, 1988.Google Scholar
  2. 2.
    Yu.M. Varezhkin, and A.N. Mikhailova. The problem of industrial waste water cleaning in Japan (Review), J. Mendeleev Sov. Chem. Soc., 1991, Vol. 36, No. 1, pp. 79–83.Google Scholar
  3. 3.
    A.V. Putilov, A.A. Kopreev, and N.V. Petrukhin. Environmental Protection. Moscow, Khimiya, 1991.Google Scholar
  4. 4.
    S.P. Tsygankov. Waste water utilization of agro-industrial enterprises. Biotechnology, 1987, Vol. 3, No.3 pp. 402–407.Google Scholar
  5. 5.
    F. Berne, and J. Cordonnier. Tmitement des Eaux. Epuration des Eaux Residuaries de Raffinage. Coditionnement des Eaux de Refrigeration. Paris, Editions Technip, 1991.Google Scholar
  6. 6.
    K. Czaczyk, A. AltnechC A. Mroczkowski, and K. Trojanowska. Mechanical stability of carrageenan and carrageenan/locust bean gum gels used for immobilization of propionic acid bacteria. J. Biotechnol., 1997, Vol. 53, No. 1, pp. 13–20.CrossRefGoogle Scholar
  7. 7.
    U.S.S.R. Patent 1291553, C 02 F 3/04. Method of biofilters charging manufacturing. F.V. Shemarov, G.A. Ostretsov, Yu.V. Voronov, et al., 1987.Google Scholar
  8. 8.
    C.S.S.H. Patent 1542917, C 02 F 3/04. Biofilters charging. V.M. Karlovsky, K.V. Kremnev, Yu.V. Voronov, and N.A. Ananjeva, 1990.Google Scholar
  9. 9.
    U.S.S.R. Patent 1560486, C 02 F 3/04. Biofilters charging. Yu.V. Voronov, A.L. Ivehatov, O.B. Netis, and V.P. Solomeev. 1990.Google Scholar
  10. 10.
    A. Khlebikov, and P. Peringer. Biodegradation of p-toluenesulphonic acid by Comamonas testosteroni in aerobic countercurrent structured packing biofilm reactor. Water Sci. Technol., 1996, Vol. 34. No. 5-6, pp. 257–266.Google Scholar
  11. 11.
    S.P.P. Ottengraf, M.C.J. Swits and R.M.M. Diks. Scaling up biofiltration for reliable processes in practice. Wider Appl. and Diffusion Bioremediation Technol., The Amsterdam-95 Workshop. OESD DocUInents. Paris. 1996. pp. 245–267.Google Scholar
  12. 12.
    F. Kargi, and A. Uygur. Biological treatment of saline wastewater in a rotating biodisk contactor by using halophilic organisms. Bioprocess Eng., 1997. Vol. 17. No. 2. pp. 81–85.CrossRefGoogle Scholar
  13. 13.
    R.K. Gorodetskaya, and L.I. Gracheva. Elastic foampolyurethane application as filtering and sorbing material. Chem. Ind.. 1991 No.11. pp. 13(653)–18(658).Google Scholar
  14. 14.
    Y.-C. Chung, C. Huang, and C.-P. Tseng. Removal of hydrogen sulphide by immobilized Thiobacillus sp. Strain CH 11 in a biofilter. J. Chem. Tech. Biotechnol., 1997, Vol. 69, pp. 58–62.CrossRefGoogle Scholar
  15. 15.
    C.S.S.H. Patent 1623982. C 02 F 3/34. Method of water biochemical cleaning from anionic surface-active agents. A.B. Lobova, I.I. Shamolina, S.S. Stavskaya. et al. 1991.Google Scholar
  16. 16.
    K.-H. Engesser, M. Reiser, T. Plaggemeir, and T. Laemmerszahl. Why biofiltration is introduced in indastrial practice? Wider Appl. and Diffusion Bioremediation Technol., The Amsterdam-95 Workshop, OECD Documents, Paris, 1996. pp. 115–121.Google Scholar
  17. 17.
    France Patent Appl. 2639342, C 02 F 3/06. Support de fixation des microorganismes dans lepuration utilisant untel support. G. Valeutis and J. Lesavre. 1990.Google Scholar
  18. 18.
    A. V. Makarevich, L.S. Pinchuk, and L.A. Dunaitsev. New polymer microorganisms carriers in filters for wastewater biological cleaning. Proc. Belarus AS. 1997. Vol. 41. No. 1, pp. 114–118.Google Scholar
  19. 19.
    A.V. Makarevich, I.A. Dunaitsev, and L.S. Pinchuk. Aerobic treatment of industrial wastewaters by biofilters with fibrous polymeric biomass carriers. Bioprocess Eng., 2000. Vol. 22, No. 2, pp. 121–126.CrossRefGoogle Scholar
  20. 20.
    S.V. Yakovlev, and Yu.V. Voronov. Biological Filters. Moscow, Stroviildat. 1982.Google Scholar
  21. 21.
    Belarus Patent 2753, C 02 F 3/00. Biomass carrier for waste-water biological cleaning filters. A.V. Makarevich, I.A. Dulaitsev, and L.S. Pinchuk. 1999.Google Scholar
  22. 22.
    V.I. Danilov. About magnetic fields influence on biological objects. Biophysics, 1990, Vol. 35. No. 6. pp. 989–992.Google Scholar
  23. 23.
    M. Klugcle, A.B. Yule, and M. Kalaji. An effect of magnetic field exposure on microorganism associated with fuel oil. Biofouling. 1999, Vol.14. No.3. pp.197–211.CrossRefGoogle Scholar
  24. 24.
    M. Mehedintu, and H. Berg. New method to evaluate the proliferation response of yeast suspensions on electromagnetic field pyrometers. Abstr. 8th Eur. Congr. Biotechnol.. Budapest. 1997. p.193.Google Scholar
  25. 25.
    A. V. Makarevich. Effect of magnetic fields of magnetoplastics on the growth of microorganisms. Biophysics. 1999. Vol. 44. No. 1. pp. 65–69.Google Scholar
  26. 26.
    L.A. Musychenko, V.N. Senatorova, L.L. Al’khovskaya, et al. Morphological analysis of microorganism evolution. Biotechnology. 1990. No. 3. pp. 3–6.Google Scholar
  27. 27.
    M.V. Volkenshtein. Physics and Bioloqy. Moscow, Nallka, 1980.Google Scholar
  28. 28.
    A.G. Alexeev, and Yu.A. Kholodov. Electromagnetic safety. Bulletin RAEN St.-Peterburg Department. 1997, Vol. 1, No. 1. pp. 49–54.Google Scholar
  29. 29.
    A.P. Zhukovsky. The biophysical mechanism of the action of magnetic fields and electrornagnetic radiation on living organisms. Abstr. Int. Congr., Weak and Hyperweak Fields and Radiation in Biology and Medicine, St.-Petersburg, 1997, pp. 47–48.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • L. S. Pinchuk
    • 1
  • V. A. Goldade
    • 1
  • A. V. Makarevich
    • 1
  • V. N. Kestelman
    • 2
  1. 1.V. A. Belyi Metal-Polymer Research Institute of the National Academy of Sciences of BelarusGomelBelarus
  2. 2.KVN International Inc.King of PrussiaUSA

Personalised recommendations