Skip to main content

Optimal Design of the Power Train of Vehicles: Modelling, Simulation and Optimization

  • Conference paper
High Performance Scientific And Engineering Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 21))

  • 644 Accesses

Abstract

In the early stage of development of a vehicle, the design of the power train is encouraged by numerical simulations. Virtual testing of different variants and configurations of a car can be well-investigated without constructing any prototype. The mathematical models used to calculate the fuel consumption and driving power differ. Therefore, there exist different program packages to calculate these qualifying criteria of a vehicle. A standard interface between these packages and the optimization program has to be developed. Different, partly antagonistic objective functions are presented to optimize the design of the power train. The most important of the criteria are driving power and fuel consumption. The aim of development of new vehicles is to reduce the fuel consumption without loss of driving power. To fulfil these requirements it is not enough to investigate on each part of the power train separately. It is more efficient to optimize the whole system, using a mathematical model of the power train. The aim of the investigations is to find optimal characteristics of the torque converter, automatic gear transmissions, and the transmission of the rear axle differential, using mathematical methods for systematic optimization. In this paper methods are developed which can be used to optimize both model parameters and whole characteristics. The investigations are split up into the topics: mathematical description of objective functions, appropriate parameterization of characteristics, sensitivity analyses of the objective function. Some results are presented

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achtziger, W., Zowe, J. (1996) Nichtglatte Optimierung. Vorlesungsskript, Institut f. Angewandte Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg

    Google Scholar 

  2. Andritzky, B. (1996) Verifikation und Erweiterung des konfigurierbaren Berechnungskerns zur Simulation der Längsdynamik und zur Antriebsstrangauslegung von PKW mit Automatikgetrieben, Diplomarbeit, Technische Universität München, Lehrstuhl B für Mechanik

    Google Scholar 

  3. Choi, T., Gilmore, P., Eslinger, O. J., Keller, C., Patrick, A., Gablonsky, J. (1999) IFFCO, Implicit Filtering for Constrained Optimization, Version 2, Techn. Rep., Center for Research in Scientific Computation, North Carolina State University, Raleigh

    Google Scholar 

  4. Choi, T., Kelley, C. (1999) Superlinear Convergence and Implicit Filtering, Techn. Rep. CRSC-TR99–14, Center for Research in Scientific Computation, North Carolina State University, Raleigh. To appear in SIAM J. on Optimization

    Google Scholar 

  5. Cohn, H., Fielding, M. (1999) Simulated Annealing: Searching for an optimal Temperature Schedule, SIAM J. Optimization

    Google Scholar 

  6. Gill, P. E., Murray, W., Wright, M. H. (1981) Practical Optimization, Academic Press, Inc., San Diego, CA. Tscharnuter

    Google Scholar 

  7. Gilmore, P. (1993) IFFCO, Implicit Filtering for Constrained Optimization, Techn. Rep. CRSC-TR93–7, Center for Research in Scientific Computation, North Carolina State University, Raleigh

    Google Scholar 

  8. Gilmore, P., Kelley, C. (1995) An implicit filtering algorithm for optimization of functions with many local minima, SIAM J. Optimization 5

    Google Scholar 

  9. Hülsmann, W. (1995) Entwicklung eines konfigurierbaren Berechnungskerns zur Simulation der Fahrzeuglängsdynamik und Antriebsstrangauslegung, Diplomarbeit, Technische Universität München, Lehrstuhl B für Mechanik

    Google Scholar 

  10. Ingber, L. (1989) Very fast simulated re-annealing, Mathl. Comput. Modelling 12

    Google Scholar 

  11. Ingber, L., Rosen, B. (1992) Genetic algorithms and very fast simulated reannealing: A comparison, Mathematical and Computer Modelling 16

    Google Scholar 

  12. Mitschke, M. (1995) Dynamik der Kraftfahrzeuge Band A: Antrieb und Bremsung, Springer, 3. Auflage

    Google Scholar 

  13. Mitschke, M. (1990) Dynamik der Kraftfahrzeuge Band C: Fahrverhalten, Springer, 2. Auflage

    Google Scholar 

  14. Papageorgiou, M. (1996) Optimierung: Statische, dynamische und stochastische Verfahren für die Anwendung, R. Oldenbourg Verlag München Wien, 2. Auflage

    Google Scholar 

  15. Lewis, R. M., Torczon, V. (1999) Pattern Search Algorithm for Bound Constrained Minimization, SIAM J. Optimization 9

    Google Scholar 

  16. Torczon, V. (1991) On the Convergence of the Multidirectional Search Algorithm, SIAM J. Optimization 1

    Google Scholar 

  17. Torczon, V. (1997) On the Convergence of Pattern Search Algorithms, SIAM J. Optimization 7

    Google Scholar 

  18. Tscharnuter, D. (2000) Optimale Auslegung des Antriebsstrangs von Kraftfahrzeugen — Modellbildung, Simulation und Optimierung, Dissertation, Technische Universität München, Zentrum Mathematik. To be published

    Google Scholar 

  19. Wah, B. W. and Chen, Y. X. (2000) Optimal Anytime Constrained Simulated Annealing for Constrained Global Optimization, Proc. 6th Int. Conf. on Principles and Practice of Constraint Prop., Springer-Verlag

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tscharnuter, D. (2002). Optimal Design of the Power Train of Vehicles: Modelling, Simulation and Optimization. In: Breuer, M., Durst, F., Zenger, C. (eds) High Performance Scientific And Engineering Computing. Lecture Notes in Computational Science and Engineering, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55919-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55919-8_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42946-3

  • Online ISBN: 978-3-642-55919-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics