Skip to main content

High-Performance Computing, Multi-Scale Models for Crystal Growth Systems

  • Conference paper
High Performance Scientific And Engineering Computing

Abstract

Large-scale numerical simulation carried out via high performance computing is proving to be an increasingly useful approach to understand crystal growth systems. However, increasing realism demands new approaches for describing phenomena important at several disparate length scales. Of special importance is the ability to represent three-dimensional and transient continuum transport (flows, heat and mass transfer), phase-change phenomena (thermodynamics and kinetics), and system design (such as furnace heat transfer during melt growth). A brief overview is presented of mathematical models and numerical algorithms employed to include such multi-scale effects. Sample results are presented for Bridgman crystal growth and solution crystal growth systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuppurao, S., Brandon, S., and Derby, J.J. (1995) Modeling the vertical Bridgman growth of cadmium zinc telluride I. Quasi-steady analysis of heat transfer and convectionJ. of Crystal Growth155, 93–102

    Article  Google Scholar 

  2. Kuppurao, S., Brandon, S., and Derby, J.J. (1995) Modeling the vertical Bridgman growth of cadmium zinc telluride II. Transient analysis of zinc segregationJ. of Crystal Growth155, 103–111

    Article  Google Scholar 

  3. Hughes, T. J. R. (1987)The Finite Element MethodPrentice-Hall, Inc

    MATH  Google Scholar 

  4. Dahlquist, G., and Björck, A. (1974)Numerical MethodsPrentice-Hall

    Google Scholar 

  5. Sonda, P., Yeckel, A., Daoutidis, P., and Derby, J.J. (2001) Complex dynamics within the vertical Bridgman crystal growth process. In:Proceedings of the IFAC Symposium: DYCOPS 6

    Google Scholar 

  6. Sonda, P., Yeckel, A., Daoutidis, P., and Derby, J.J. (2001) An analysis of time-dependent flows within a vertical Bridgman crystal growth systemChem. Eng. SciSubmitted

    Google Scholar 

  7. Kurz, M., Pusztai, A., and Müller, G. (1998) Development of a new powerfull computer code CrysVUN-H- especially designed for fast simulation of bulk crystal growth processes. Presentation at: ICCG-12, the Twelfth International Conference for Crystal Growth, Jerusalem

    Google Scholar 

  8. Metzger, M., and Müller, G. (2001) Optimal Control of Crystal Growth ProcessesJ. Crystal GrowthAccepted for publication

    Google Scholar 

  9. Salinger, A.G., Xiao, Q., Zhou, Y., and Derby, J.J. (1994) Massively parallel finite element computations of three-dimensional, time-dependent, incompressible flows in materials processing systemsComput. Methods Appl. Mech. Engrg119, 139–156

    Article  MATH  Google Scholar 

  10. Zhou, H., and Derby, J.J. (2000)Parallel Implementation of Finite Element Method with MPI: Application to Three-Dimensional Free Surface Stokes Flow. In:Proceedings of the 2000 International Conference on Parallel and Distributed Processing Techniques and ApplicationsLas Vegas, NV

    Google Scholar 

  11. Yeckel, A., Pandy, A., and Derby, J.J. (2001) Representing Realistic Complexity in Numerical Models of Crystal Growth: Coupling of Global Furnace Modeling to Three-Dimensional Flows. In:Proceedings of CHT’01 Advances in Computational Heat TransferCairns, Queensland, Australia

    Google Scholar 

  12. Yeckel, A., Pandy, A., Hainke, M., Müller, G., and Derby, J.J. (2001) A coupled, multi-scale model for continuum transport in crystal growth systemsJ. Crystal GrowthIn preparation

    Google Scholar 

  13. Bordui, P.F., and Jacco, J.G. (1987) Viscosity and density of solutions used in high-temperature solution growth of KTiOPO4 (KTP)J. Crystal Growth82, 351–355

    Article  Google Scholar 

  14. Bordui, P.F., Jacco, J.G., Loiacono, G.M., Stolzenberger, R.A., and Zola, J.J. (1987) Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace systemJ. Crystal Growth84, 403–408

    Article  Google Scholar 

  15. Wilcox, W.R. (1983) Influence of convection on the growth of crystals from solutionJ. Crystal Growth65, 133–142

    Article  Google Scholar 

  16. Vartak, B., Kwon, Y.-I., Yeckel, A., and Derby, J.J. (2000) An analysis of flow and mass transfer during the solution growth of potassium titanyl phosphateJ. Crystal Growth210, 704–718

    Article  Google Scholar 

  17. Vartak, B. (2001)Three-Dimensional modeling of solution crystal growth via the finite element methodPhD thesis, University of Minnesota

    Google Scholar 

  18. Hughes, T.J.R., Franca, L.P., and Hulbert, G.M. (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equationsComput. Methods Appl. Mech. Engrg73, 173–189

    Article  MathSciNet  MATH  Google Scholar 

  19. Vartak, B., and Derby, J.J. (2001) On stable algorithms and accurate solutions for convection-dominated mass transfer in crystal growth modelingJ. Crystal Growth230, 202–209

    Article  Google Scholar 

  20. Saad, Y., and Schultz, M. (1986) GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systemsSIAM J. Sci. Stat. Comput7, 856–869

    Article  MathSciNet  MATH  Google Scholar 

  21. Yeckel, A., and Derby, J.J. (1997) Parallel computation of incompressible flows in materials processing: Numerical experiments in diagonal preconditioningParallel Computing23, 1379–1400

    Article  MathSciNet  MATH  Google Scholar 

  22. Burton, W.K., Cabrera, N., and Frank, F.C. (1951) The growth of crystals and the equilibrium structure of their surfacesPhil. Trans. Roy. Soc. London243, 299–358

    Article  MathSciNet  MATH  Google Scholar 

  23. Kwon, Y.-I., and Derby, J.J. (2001) Modeling the coupled effects of interfacial and bulk phenomena during solution crystal growthJ. Crystal Growth230, 328–335

    Article  Google Scholar 

  24. Kim, K.M., Witt, A.F., and Gatos, H.C. (1972) Crystal growth from the melt under destabilizing thermal gradientsJ. Electrochem. Soc119, 1218–1226

    Article  Google Scholar 

  25. Turner, J.S. (1973)Buoyancy effects in fluidsCambridge University Press

    Book  Google Scholar 

  26. Kwon, Y.-I., and Derby, J.J. (2001) Step growth dynamics during solution crystal growthJ. Crystal GrowthIn preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Derby, J.J. et al. (2002). High-Performance Computing, Multi-Scale Models for Crystal Growth Systems. In: Breuer, M., Durst, F., Zenger, C. (eds) High Performance Scientific And Engineering Computing. Lecture Notes in Computational Science and Engineering, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55919-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55919-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42946-3

  • Online ISBN: 978-3-642-55919-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics