Direct Numerical Simulation of Bubble Swarms with a Parallel Front-Tracking Method

  • M. F. Göz
  • B. Bunner
  • M. Sommerfeld
  • G. Tryggvason
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 21)

Abstract

Direct numerical simulations are performed to study the behaviour of an important class of dispersed multiphase flows, namely gas bubbles rising in a liquid. The numerical method combines a finite difference scheme for solving the Navier-Stokes equations with a front tracking method for following the gas-liquid interfaces. The size of the problem as well as the simulation time requirements necessitate the use of large parallel computers. Sample simulation results are presented illustrating the evolution of such systems and the dependence of statistical quantities on the gas volume fraction. The goal of these numerical experiments is to gain insight into fundamental properties of bubbly flows and support the development of simplified models

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schlüter M., Räbiger N. (1998) Bubble swarm velocity in two phase flows. In: Proc. of the ASME Heat Transfer Division, HTD-Vol. 361, Volume 5, AnaheimGoogle Scholar
  2. 2.
    Bröder D., Lain S., Sommerfeld M. (2000) Experimental studies of the hydrodynamics in a bubble column. In: Proc. 5th German-Japanese Symposium on Bubble Columns in Dresden, Germany, May 29—May 31, 2000, TU Bergakademie Freiberg, pp. 125–130Google Scholar
  3. 3.
    Tryggvason G., Bunner B., Ebrat O., Tauber W. (1998) Computations of Multiphase Flows by a Finite Difference/Front Tracking Method. I Multi-Fluid Flows. In: 29th Computational Fluid Dynamics. Lecture Series 1998–03. Von Karman Institute for Fluid DynamicsGoogle Scholar
  4. 4.
    Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A front tracking method for the computations of multiphase flows. Accepted for publication in J. Comp. PhysGoogle Scholar
  5. 5.
    Lehr, F., Mewes, D. (2000) A transport equation for the interfacial area density applied to bubble columns, Proc. of ASME-FED June 2000, BostonGoogle Scholar
  6. 6.
    Bunner B. (2000) Numerical simulation of gas-liquid bubbly flows. Ph.D. thesis, The University of Michigan, Ann ArborGoogle Scholar
  7. 7.
    Bunner B., Tryggvason G. (submitted) Direct numerical simulations of bubbly flows. Part I: Motion of the bubbles. J. Fluid. MechGoogle Scholar
  8. 8.
    Lance M., Bataille J. (1991) Turbulence in the liquid phase of a uniform bubbly air-water flow. J. Fluid Mech22295–118CrossRefGoogle Scholar
  9. 9.
    Göz M. F., Bunner B., Sommerfeld M., Tryggvason G. (2000) Direct numerical simulation of the interaction of gas bubbles in a liquid — the effects of deformability and bidispersity. In: Proc. 5th German-Japanese Symposium on Bubble Columns in Dresden, Germany, May 29—May 31, 2000, TU Bergakademie Freiberg, pp. 288–293Google Scholar
  10. 10.
    Göz M. F., Bunner B., Sommerfeld M., Tryggvason G. (2001) Simulation of bubbly gas-liquid flows by a parallel finite-difference/front-tracking method. In: E. Krause&W. Jäger (eds.), High Performance Computing in Science and Engineering 2000 (Springer), pp. 326–337Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • M. F. Göz
    • 1
  • B. Bunner
    • 2
  • M. Sommerfeld
    • 1
  • G. Tryggvason
    • 3
  1. 1.Institut für VerfahrenstechnikFachbereich Ingenieurwissenschaften, Martin-Luther-Universität Halle-WittenbergHalleGermany
  2. 2.Microfluidics and Biotechnology GroupCambridgeUSA
  3. 3.Department of Mechanical EngineeringWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations