Skip to main content

Effects of Ionizing Radiation on the Conjunctiva, Cornea, and Lens

  • Chapter
Radiotherapy of Intraocular and Orbital Tumors

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 303 Accesses

Abstract

The human eye is exposed to a wide range of radiant energy aside from the visual spectrum, including ultraviolet, infrared, microwave, and ionizing radiation. Of these, ionizing radiation can cause some of the most significant and long-lasting ocular damage to the lens, conjunctiva, and cornea. Ionizing sources include cosmic (30 Mrem/year) and terrestrial sources (60 Mrem/year), as well as man-made sources (60 Mrem/year). These last include X-rays, radioactive isotopes, diagnostic and therapeutic radioactive sources, and release from nuclear power stations. Control of these man-made exposures with shielding of the globe, when possible, can minimize or eliminate the acute and chronic effects of radiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avunduk AM, Yardimci S, Avunduk MC et al. (2000) A possible mechanism of X-ray-induced injury in rat lens. Jpn J Ophthalmol 44:88–91

    Article  PubMed  CAS  Google Scholar 

  • Chalupecky H (1897) Ober die Wirkung der Riintgenstrahlen. Zentralbl Prakt Augenheilkd 21:386–401

    Google Scholar 

  • Cogan D, Dreisler K (1953) Minimal amount of X-ray exposure causing lens opacities in the human eye. Arch Ophthalmol 50:30–34

    Article  CAS  Google Scholar 

  • Cogan D, Martin S, Ikui H (1950) Ophthalmologic survey of atomic bomb survivors in Japan. Trans Am Ophthalmol Soc 48:62–87

    PubMed  CAS  Google Scholar 

  • Donnenfeld ED, Perry HD, Nelson DB (1991) Cyanoacrylate temporary tarsorrhaphy in the management of corneal epithelial defects. Ophthalmic Surg 22:591–593

    PubMed  CAS  Google Scholar 

  • Fujishima H, Shimazaki J, Tsubota K (1996) Temporary corneal stem cell dysfunction after radiation therapy. Br J Ophthalmol 80:911–914

    Article  PubMed  CAS  Google Scholar 

  • Griffith T, Pirie A, Vaughn J (1985) Possible cataractogenic effects of radio-nuclides deposited within the eye from the bloodstream. Br J Ophthalmol 69:219–227

    Article  PubMed  CAS  Google Scholar 

  • Ham W (1953) Radiation cataract. Arch Ophthalmol 50:618–643

    Article  Google Scholar 

  • Hayes B, Fisher R (1979) Influence of a prolonged period of low-dosage X-rays on the optic and ultrastructural appearances of cataract of the human lens. Br J Ophthalmol 63:457–464

    Article  PubMed  CAS  Google Scholar 

  • Hightower KR, Giblin F, Reddy V (1983) Changes in the distribution of lens calcium during development of X-ray cataract. Invest Ophthalmol Vis Sci 24:1188–1193

    PubMed  CAS  Google Scholar 

  • Hosal BM, Biglan AW, Elhan AH (2000) High levels ofbinocular function are achievable after removal of monocular cataracts in children before 8 years of age. Ophthalmology 107:1647–1655

    Article  PubMed  CAS  Google Scholar 

  • Junk AK, Egner P, Gottloeber P et al. (1999) Long-term radiation damage to the skin and eye after combined beta and gamma radiation exposure during the reactor accident in Chernobyl. Klin Monatsbl Augenheilkd 215:355–360

    Article  PubMed  CAS  Google Scholar 

  • Kalt, (1919) Therapeutic use of X-rays and radium. Bull Soc Fr Ophthalmol 32:125

    Google Scholar 

  • Kobayashi S, Kasuya M, Shimizu K et al. (1993) Glutathione isopropyl ester (YM737) inhibits the progression of X-ray-induced cataract in rats. Curr Eye Res 12:115–122

    Article  PubMed  CAS  Google Scholar 

  • Lambert B, Kinoshita J (1967) The effects of ionizing radiation on lens cation permeability, transport and hydration. Invest Ophthalmol Vis Sci 6:624–634

    CAS  Google Scholar 

  • Lambert SR, Buckley EG, Plager DA et al. (1999) Unilateral intraocular lens implantation during the first six months of life. J AAPOS 3:344–349

    Article  PubMed  CAS  Google Scholar 

  • Lamberts D, Foster C, Perry H (1979) Schirmer test after topical anesthesia and the tear meniscus height in normal eyes. Arch Ophthalmol 97:1082

    Article  PubMed  CAS  Google Scholar 

  • Lemp M (1987) Recent developments in dry eye management. Ophthalmol 94:1299–1304

    CAS  Google Scholar 

  • Lerman S (1980) Radiant energy and the eye. Macmillan, New York, pp 279–302

    Google Scholar 

  • Lipman R, Tripathi B, Tripathi R (1988) Cataracts induced by microwave and ionizing radiation. Surv Ophthalmol 33:200–210

    Article  PubMed  CAS  Google Scholar 

  • Livesey JC, Wiens LW, Von Seggern DJ et al. (1995) Inhibition of radiation cataractogenesis by WR-77913. Radiat Res 141:99–104

    Article  PubMed  CAS  Google Scholar 

  • MacFaul P, Bedford M (1970) Ocular complications after therapeutic irradiation. Br J Ophthalmol 54:237–247

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H, Giblin F, Reddy V (1982) The effect of X-irradiation on Na-K ATPase and action distribution in rabbit lens. Invest Ophthalmol Vis Sci 22:180–185

    PubMed  CAS  Google Scholar 

  • Meesman A (1926) Beitrag zur Röntgen-Radium-Strahlen-schädigung der menschlichen Linse Klin Monatsbl Augenheilkd 81:259–69

    Google Scholar 

  • Merriam G Jr, Szechter A, Focht E (1972) The effects of ionizing radiation on the eye. Radiat Ther Oncol 6:346

    Google Scholar 

  • Miller RJ, Fujino T, Nefzger M (1967) Lens findings in atomic bomb survivors. Arch Ophthalmol 78:697–704

    Article  PubMed  CAS  Google Scholar 

  • Rohrschneider W (1928) Klinischer Beitrag zur Entstehung und Morphologie der Riintgenstrahlenkatarakt. Klin Monatsbl Augenheilkd 81:253–259

    Google Scholar 

  • Ross WM, Creighton MO, Trevithick JR (1990) Radiation cataractogenesis induced by neutron or gamma irradiation in the rat lens is reduced by vitamin E. Scanning Microsc 4:641–649

    PubMed  CAS  Google Scholar 

  • Roth J, Brown N, Catterall M et al. (1976) Effects of fast neutrons on the eye. Br J Ophthalmol 60:236–244

    Article  PubMed  CAS  Google Scholar 

  • Sallman L, Locke B (1951) Experimental studies on early lens changes after roentgen irradiation. II. Exchange and penetration of radioactive indicators in normal and irradiated lenses of rabbits. Arch Ophthalmol 45:431–444

    Article  CAS  Google Scholar 

  • Sallman LV (1951) Experimental studies on early lens changes after roentgen irradiation. I. Morphological and cytochemical changes. Arch Ophthalmol 44:149–164

    Article  Google Scholar 

  • Sasaki H, Lin LR, Yokoyama T et al. (1998) TEMPOL protects against lens DNA strand breaks and cataract in the xrayed rabbit. Invest Ophthalmol Vis Sci 39:544–552

    PubMed  CAS  Google Scholar 

  • Sinskey R (1955) The status of lenticular opacities caused by atomic radiation. Am J Ophthalmol 39:285–293

    PubMed  CAS  Google Scholar 

  • Tseng SCG, Prabhasawat P, Barton K et al. (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116:431–441

    PubMed  CAS  Google Scholar 

  • Wright P (1985) Topical retinoic acid therapy for disorders of the outer eye. Trans Ophthalmol Soc UK 104:869–874

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ingraham, H.J., Donnenfeld, E.D., Abramson, D.H. (2003). Effects of Ionizing Radiation on the Conjunctiva, Cornea, and Lens. In: Sagerman, R.H., Alberti, W.E. (eds) Radiotherapy of Intraocular and Orbital Tumors. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55910-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55910-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63147-4

  • Online ISBN: 978-3-642-55910-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics