Advertisement

Klinisch-chemische Untersuchungen

  • H. Dancygier
  • H. Frühauf
Chapter

Zusammenfassung

Klinisch-chemische Untersuchungen haben einen hohen Stellenwert in der Erkennung, Differenzierung und Verlaufskontrolle von Lebererkrankungen. Hierbei erlaubt ihr von der Norm abweichendes Muster diagnostische Rückschlüsse auf Art und Lokalisation des Leberschädens. Schädigung und Tod von Leberzellen führen zur Freisetzung von Zellinhaltsstoffen in den extrazellulären Raum und in die Zirkulation. Zellenzyme sind daher sensitive Indikatoren für einen Zellschaden. Störungen des Galleflusses führen zum Anstieg der Aktivitäten biliär lokalisiserter und/oder sezernierter Substanzen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Gressner AM (1987) Pathobiochemie und klinisch-chemische Diagnostik der Organ-und Systemerkrankungen, Leber und Gallenwege. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der klinischen Chemie und Pathobiochemie. Schattauer, Stuttgart, S 421–507Google Scholar
  2. Khan KN, Tsutsumi T, Nakata K et al. (1998) Regulation of alkaline phoshatase gene expression in human hepatoma cells by bile acids. J Gastroenterol Hepatol 13: 643–650PubMedCrossRefGoogle Scholar
  3. Ravel R (1995) Clinicallaboratory medicine, 6th ed. Mosby Year Book, St. LouisGoogle Scholar
  4. Reichling JJ, Kaplan MM (1988) Clinical use of serum enzymes in liver disease. Dig Dis Sci 33: 1601–1614PubMedCrossRefGoogle Scholar
  5. Schmidt E, Schmidt FW (2000) Klinisch-chemische Untersuchungsmethoden. In: Schmidt E, Schmidt FW, Manns MP (Hrsg) Lebererkrankungen. Pathophysiologie-Diagnostik-Therapie. Ein Zwischenbericht für Klinik und Praxis. Wissenschaftliche Verlagsanstalt, Stuttgart, S 8–60Google Scholar
  6. Thomas L (1998) Labor und Diagnose. Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik, 5. Aufl. TH-Books Verlagsgesellschaft, Frankfurt/MainGoogle Scholar
  7. Arrigoni A, Gindro T, Aimo G et al. (1994) Monoethylglicinexylidide test: a prognostic indicator of survival in cirrhosis. Hepatology 20: 383–387PubMedCrossRefGoogle Scholar
  8. Balogh A, Harder S, Vollandt R et al. (1992) Intra-individual variability of caffeine elimination in healthy subjects. Int J Clin Pharmacol Ther Toxicol 30: 383–387, published erratum appears in Int J Clin Pharmacol Ther Toxicol (1993) 3: 208PubMedGoogle Scholar
  9. Bergstrom M, Soderman C, Eriksson LS (1993) A simplified method to determine galactose elimination capacity in patients with liver disease. Scand J Clin Lab Invest 53: 667–670PubMedCrossRefGoogle Scholar
  10. Brockmoller J, Roots I (1994) Assessment of liver metabolic function. Clinical implications. Clin Pharmacokinet 27: 216–248PubMedCrossRefGoogle Scholar
  11. Brody DH, Leichter L (1979) Clearance tests of liver function. Med Clin North Am 63: 621–630PubMedGoogle Scholar
  12. Caspary WF (1978) Atemanalytische Tests in der Leberfunktionsdiagnostik. Z Gastroenterol 16: 188–197PubMedGoogle Scholar
  13. Cheng WS, Murphy TL, Smith MT et al. (1990) Dose-dependent pharmacokinetics of caffeine in humans: relevance as a test of quantitative liver function. Clin Pharmacol Ther 47: 516–524PubMedCrossRefGoogle Scholar
  14. Fairchild R, Solomon H, Contis J et al. (1996) Prognostic value of the monoethylglycinexylidide liver function test in assessing donor liver suitability. Arch Surg 131: 1099–1102PubMedCrossRefGoogle Scholar
  15. Farinati F, Dalri L, Rossaro L et al. (1993) Serum and salivary caffeine clearance in cirrhosis. Any role in selection for surgery and timing for transplantation? J Hepatol 18: 135–136PubMedCrossRefGoogle Scholar
  16. Friedman LS, Martin P, Muñoz SJ (1996) Liver function tests and the objective evaluation of the patient with liver disease. In: Zakim D, Boyer T (eds) Hepatology — a textbook of liver disease, 3rd ed. Saunders, Philadelphia, pp 791–833Google Scholar
  17. Jalan R, Hayes PC (1995) Quantitative tests of liver function. Aliment Pharmacol Ther 9: 263–270PubMedCrossRefGoogle Scholar
  18. Lewis FW, Rector WG Jr (1992) Caffeine clearance in cirrhosis. The value of simplified determinations of liver metabolic capacity. J Hepatol 14: 157–162PubMedCrossRefGoogle Scholar
  19. Lotterer E, Hogel J, Gaus W et al. (1997) Quantitative liver function tests as surrogate markers for end-points in controlled clinical trials: a retrospective feasibility study. Hepatology 26: 1426–1433PubMedCrossRefGoogle Scholar
  20. Maynard ND, Bihari DJ, Dalton RN et al. (1997) Liver function and splanchnic ischemia in critically ill patients. Chest 111: 180–187PubMedCrossRefGoogle Scholar
  21. Merkel C, Gatta A, Zoli M et al. (1991) Prognostic value of galactose elimination capacity, aminopyrine breath test, and ICG clearance in patients with cirrhosis. Comparison with the Pugh score. Dig Dis Sci 36: 1197–1203PubMedCrossRefGoogle Scholar
  22. Merkel C, Bolognesi M, Bellon S et al. (1992) Aminopyrine breath test in the prognostic evaluation of patients with cirrhosis. Gut 33: 836–842PubMedCrossRefGoogle Scholar
  23. Merkel C, Marchesini G, Fabbri A et al. (1996) The course of galactose elimination capacity in patients with alcoholic cirrhosis: possible use as a surrogate marker for death. Hepatology 24: 820–823PubMedCrossRefGoogle Scholar
  24. Meyer-Wyss B, Renner E, Luo H et al. (1993) Assessment of lidocaine metabolite formation in comparison with other quantitative liver function tests. J Hepatol 19: 133–139PubMedCrossRefGoogle Scholar
  25. Molino G, Cavanna A, Avagnina P et al. (1987) Hepatic clearance of D-sorbitol. Noninvasive test for evaluating functional liver plasma flow. Dig Dis Sci 32: 753–758PubMedCrossRefGoogle Scholar
  26. Paumgartner G (1975) The handling of indocyanine green by the liver. Schweiz Med Wochenschr 105 [suppl]: 1–30PubMedGoogle Scholar
  27. Preisig R (1985) Fremdsubstanzen als Indikatoren der Leberfunktion. Schweiz Med Wochenschr [suppl 19]: 36–42Google Scholar
  28. Reichen J, Widmer T, Cotting J (1991) Accurate prediction of death by serial determination of galactose elimination capacity in primary biliary cirrhosis: a comparison with the Mayo model. Hepatology 14: 504–510PubMedCrossRefGoogle Scholar
  29. Rosenthal SM, White EC (1925) Clinical application of bromsulphthalein test for hepatic function. JAMA 84: 1112CrossRefGoogle Scholar
  30. Rowntree LG, Hurwitz SH, Bloomfield AL (1913) An experimental and clinical study of the value of phenoltetrachlorphthalein as a test of hepatic function. Bull Johns Hopkins Hosp 24: 327Google Scholar
  31. Salerno F, Borroni G, Moser P et al. (1996) Prognostic value of the galactose test in predicting survival of patients with cirrhosis evaluated for liver transplantation. A prospective multicenter Italian study. J Hepatol 25: 474–480PubMedCrossRefGoogle Scholar
  32. Shiffman ML, Luketic VA, Sanyal AJ et al. (1994) Hepatic lidocaine metabolism and liver histology in patients with chronic hepatitis and cirrhosis. Hepatology 19: 933–940PubMedCrossRefGoogle Scholar
  33. Stremmel W, Wojdat R, Groteguth R et al. (1992) Leberfunktionstests im klinischen Vergleich. Z Gastroenterol 30: 784–790PubMedGoogle Scholar
  34. Tygstrup N (1990) Assessment of liver function: principles and practice. J Gastroenterol Hepatol 5: 468–482PubMedCrossRefGoogle Scholar
  35. Wahlländer A, Beuers U (1990) Prognostischer Wert von Leberfunktionstests — Klinik, laborchemische Parameter und quantitative Funktionstests. Leber Magen Darm 20: 115–116,119–123,126–128PubMedGoogle Scholar
  36. Wahlländer A, Mohr S, Paumgartner G (1990) Assessment of hepatic function. Comparison of caffeine clearance in serum and saliva during the day and at night. J Hepatol 10: 129–137PubMedCrossRefGoogle Scholar
  37. Abuaf N, Johanet C, Chretien P et al. (1992) Characterization of the liver cytosol antigen type 1 reacting with autoantibodies in chronic active hepatitis. Hepatology 16: 892–898PubMedCrossRefGoogle Scholar
  38. Berg PA, Klein R (1992) Antimitochondrial antibodies in primary biliary cirrhosis and other disorders: definition and clinical relevance. Dig Dis Sci 10: 85–101CrossRefGoogle Scholar
  39. Czaja AJ (1996) Autoimmune liver disease. In: Zakim D, Boyer TD (eds) Hepatology — a textbook of liver disease, 3rd ed. Saunders, Philadelphia London Toronto Montreal Sydney Tokyo, pp 1259–1292Google Scholar
  40. Czaja AJ, Nishioka M, Morshed SA et al. (1994) Patterns of nuclear immunofluorescence and reactivities to recombinant nuclear antigens in autoimmune hepatitis. Gastroenterology 107: 200–207PubMedGoogle Scholar
  41. Czaja AJ, Cassani F, Cataleta M et al. (1996) Frequency and significance of antibodies to actin in type 1 autoimmune hepatitis. Hepatology 24: 1068–1073PubMedCrossRefGoogle Scholar
  42. Czaja AJ, Pfeifer KD, Decker RH et al. (1996) Frequency and significance of antibodies to asialoglycoprotein receptor in type 1 autoimmune hepatitis. Dig Dis Sci 4: 1733–1740CrossRefGoogle Scholar
  43. Czaja AJ, Homburger HA (2001) Autoantibodies in liver disease. Gastroenterology 120: 239–249PubMedCrossRefGoogle Scholar
  44. Dancygier H, Frühauf H (1997) Klinische Pharmakologie der Leberkrankheiten. In: Kuemmerle (Hrsg) Klinische Pharmakologie, 4. Aufl., Kap IV — 4.11.1. Ecomed, 1Landsberg, S 1–77Google Scholar
  45. Duerr RH, Targan SR, Landers CJ et al. (1991) Neutrophil cytoplasmic antibodies: a link between primary sclerosing cholangitis and ulcerative colitis. Gastroenterology 100: 1385–1391PubMedGoogle Scholar
  46. García-Buey L, García-Monzón C, Rodriguez S et al. (1995) Latent autoimmune hepatitis triggered during interferon therapy in patients with chronic hepatitis C. Gastroenterology 108: 1770–1777PubMedCrossRefGoogle Scholar
  47. Gross WL, Hauschild S, Schmitt WH (1993) Immundiagnostische und immunpathogenetische Bedeutung von AntiNeutrophilen-Zytoplasma-Antikörpern. Dtsch Med Wochenschrl 18: 191–199CrossRefGoogle Scholar
  48. Halbwachs-Mecarelli L, Nusbaum P, Noel LH et al. (1992) Antineutrophil cytoplasmic antibodies (ANCA) directed against cathepsin G in ulcerative colitis, Crohn’s disease and primary sclerosing cholangitis. Clin Exp Immunol 90: 79–84PubMedCrossRefGoogle Scholar
  49. Kernebeck T, Lohse AW, Grotzinger J et al. (2001) A Biolnformatical approach suggests the function of the autoimmune hepatitis target antigen soluble liver antigenlliver pancreas. Hepatology 34: 230–233PubMedCrossRefGoogle Scholar
  50. Klein R, Berg PA (1990) Demonstration of “naturally occurring mitochondrial antibodies” in family members of patients with primary biliary cirrhosis. Hepatology 12: 335–341PubMedCrossRefGoogle Scholar
  51. Klein R, Huizenga JR, Gips CH et al. (1994) Antimitochondrial antibody profiles in patients with primary biliary cirrhosis before orthotopic liver transplantation and titres of antimitochondrial antibody-subtypes after transplantation. J Hepatol 20: 181–189PubMedCrossRefGoogle Scholar
  52. Klein R, Kloppel G, Garbe W et al. (1991) Antimitochondrial antibody profiles determined at early stages of primary biliary cirrhosis differentiate between a benign and a progressive course of the disease. A retrospective analysis of 76 patients over 6–18 years. J Hepatol 12: 21–27PubMedCrossRefGoogle Scholar
  53. Manns M (1989) Autoantibodies and antigens in liver diseases — updated. J Hepatol 9: 272–280PubMedCrossRefGoogle Scholar
  54. Manns MP, Johnson EF, Griffin KJ et al. (1989) Major antigen of liver kidney microsomal autoantibodies in idiopathic autoimmune hepatitis is cytochrome P450db1. J Clin Invest 83: 1066–1072PubMedCrossRefGoogle Scholar
  55. Manns MP, Griffin KJ, Sullivan KF et al. (1991) LKM-1 autoantibodies recognize a short linear sequence in P450IID6, a cytochrome P-450 monooxygenase. J Clin Invest 88: 1370–1378PubMedCrossRefGoogle Scholar
  56. Mayet WJ, Orth T, Schwarting A et al. (1996) Die Bedeutung antineutrophiler zytoplasmatischer Antikörper (ANCA) in der Diagnostik und Immunpathogenese chronisch entzündlicher Lebererkrankungen. Med Klin 91: 384–388Google Scholar
  57. McFarlane IG, Hegarty JE, McSorley CG et al. (1984) Antibodies to liver-specific protein predict outcome of treatment withdrawal in autoimmune chronic active hepatitis. Lancet 2:954–956Google Scholar
  58. Meyer zum Büschenfelde KH, Gerken G (1996) Immune mechanisms in the production of liver disease. In: Zakim D, Boyer TD (eds) Hepatology: a textbook of liver disease, 3rd ed. Saunders, Philadelphia London Toronto Montral Sydney Tokyo, PP 1243–1258Google Scholar
  59. Philipp T, Durazzo M, Trautwein C et al. (1994) Recognition of uridine diphosphate glucuronosyl transferases by LKM-3 antibodies in chronic hepatitis D. Lancet 344: 578–581PubMedCrossRefGoogle Scholar
  60. Poupon R, Poupon RE (1996) Primary biliary cirrhosis. In: Zakim D, Boyer TD (eds) Hepatology: a textbookof liver disease, 3rd ed. Saunders, Philadelphia London Toronto Montral Sydney Tokyo, pp 1329–1365Google Scholar
  61. Scibold F, Slametschka D, Gregor M et al. (1994) Neutrophil autoantibodies: a genetic marker in primary sclerosing cholangitis and ulcerative colitis. Gastroenterology 107: 532–536Google Scholar
  62. Szostecki C, Will H, Netter HJ et al. (1992) Autoantibodies to the nuclear Sp100 protein in primary biliary cirrhosis and associated diseases: epitope specificity and immunoglobulin class distribution. Scand J Immunol 36: 555–564PubMedCrossRefGoogle Scholar
  63. Targan SR, Landers C, Vidrich A et al. (1995) High-titer antineutrophil cytoplasmic antibodies in type-1 autoimmune hepatitis. Gastroenterology 108: 1159–1166PubMedCrossRefGoogle Scholar
  64. Thomas L (1992) Labor und Diagnose: Indikation und Bewertung von Laborbefunden für die Medizinische Diagnostik. Autoantikörper gegen Organgewebe und Thrombozyten 4. Aufl. Medizinische Verlagsgesellschaft, MarburgGoogle Scholar
  65. Toh BH (1979) Smooth muscle autoantibodies and autoantigens. Clin Exp Immunol 38: 621–628PubMedGoogle Scholar
  66. Treichel U, McFarlane BM, Seki T et al. (1994) Demographics of anti-asialoglycoprotein receptor autoantibodies in autoimmune hepatitis. Gastroenterology 107: 799–804PubMedCrossRefGoogle Scholar
  67. Treichel U, Paietta E, Poralla T et al. (1994) Effects of cytokines on synthesis and function of the hepatic asialoglycoprotein receptor. J Cell Physiol 158: 527–534PubMedCrossRefGoogle Scholar
  68. Vierling JM (1996) Hepatobiliary complications of ulcerative colitis and Crohns’ disease. In: Zakim D, Boyer TD (eds) Hepatology: a textbook of liver disease, 3rd ed. Saunders, Philadelphia London Toronto Montreal Sydney Tokyo, pp 1366–1405Google Scholar
  69. Wachter B, Kyriatsoulis A, Lohse AW et al. (1990) Characterization of liver cytokeratin as a major target antigen of anti-SLA antibodies. J Hepatol 11: 232–239PubMedCrossRefGoogle Scholar
  70. Wesierska-Gadek J, Grimm R, Hitchman E et al. (1998) Members of the glutathione S-transferase gene family are antigens in autoimmune hepatitis. Gastroenterology 114: 329–335PubMedCrossRefGoogle Scholar
  71. Wies I, Brunner S, Henninger J et al. (2000) Identification of target antigen for SLA/LP autoantibodies in autoimmune hepatitis. Lancet 355: 1510–1515PubMedCrossRefGoogle Scholar
  72. Yamamoto AM, Cresteil D, Homberg JC et al. (1993) Characterization of anti-liver-kidney microsome antibody (antiLKM1) from hepatitis C virus-positive and-negative sera. Gastroenterology 104: 1762–1767PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • H. Dancygier
  • H. Frühauf

There are no affiliations available

Personalised recommendations