Advertisement

Reaktionsformen und morphologische Schädigungsmuster

  • H. Dancygier
Chapter

Zusammenfassung

Das Repertoire morphologischer Ausdrucksformen und Anpassungsreaktionen der Leber ist begrenzt. Unterschiedliche Noxen können auf verschiedenen pathogenetischen Wegen zu gleichartigen morphologischen Bildern führen. In der ständigen Auseinandersetzung mit schädigenden Einflüssen versucht die Zelle ihre Struktur und Funktion durch Anpassungsvorgänge, zunächst auf biochemischer, dann auf subzellulärelektronenmikroskopischer Ebene und schließlich lichtoptisch sichtbar, zu bewahren. Erfolg oder Misserfolg der Adaptation entscheiden darüber, ob eine Noxe zur Erkrankung führen wird oder nicht. Hierbei ist es durchaus möglich, dass die Anfangsphase einer erfolgreichen Adaptation mit einer Funktionssteigerung verbunden ist. Erst wenn die Zelle nicht mehr imstande ist, eine adäquate Homöostase aufrechtzuerhalten, entwickelt sich ein Zellschaden. Das Ausmaß der Zellschädigung hängt von zellulären Faktoren, wie Zelltyp, metabolischer und Ernährungszustand, Differenzierungsgrad und Anpassungsvermögen, sowie von der Art, Intensität und Dauer der Noxe ab.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abe K, Kurakin A, Mohseni-Maybodi M et al. (2000) The complexitiy of TNF-related apoptosis-inducing ligand. Ann NY Acad Sci 926: 52–63PubMedCrossRefGoogle Scholar
  2. Arends MJ, Morris RG, Wyllie AH (1990) Apoptosis. The role of the endonuclease. Am J Pathol 136: 593–608PubMedGoogle Scholar
  3. Benedetti A, Marucci L (1999) The significance of apoptosis in the liver. Liver 19: 453–463PubMedCrossRefGoogle Scholar
  4. Farber JL (1992) The biochemistry of cell death. J Toxicol Pathol 5: 1–9Google Scholar
  5. Faubion WA, Gores GJ (1998) Death receptors in liver biology and pathobiology. Hepatology 29: 1–4CrossRefGoogle Scholar
  6. Feldmann G (1997) Liver apoptosis. J Hepatol 26 [suppl 2]: 1–11PubMedCrossRefGoogle Scholar
  7. Fesus L, Davies JA, Piacentini M (1991) Apoptosis: molecular mechanisms in programmed cell death. Eur J Cell Biol 56: 170–177PubMedGoogle Scholar
  8. Galle PR (1997) Apoptosis in liver disease. J Hepatol 27: 405–412PubMedCrossRefGoogle Scholar
  9. Hockenbery D (1995) Defining apoptosis. Am J Pathol 146: 16–19PubMedGoogle Scholar
  10. Iredale JP, Benyon RC, Pickering Jet al. (1998) Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 102: 538–549PubMedCrossRefGoogle Scholar
  11. Kaplowitz N (2000) Cell death at the millenium:implications for liver diseases. Clin Liver Dis 4: 1–23PubMedCrossRefGoogle Scholar
  12. Kerr JFR (1971) Shrinkage necrosis:a distinct mode of cellular death. J Pathol 105: 13–20PubMedCrossRefGoogle Scholar
  13. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257PubMedCrossRefGoogle Scholar
  14. Majno G, Joris J (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146: 3–15PubMedGoogle Scholar
  15. Natori S, Rust C, Stadheim LM et al. (2001) Hepatocyte apoptosis is a pathologie feature of human alcoholic hepatitis. J Hepatol 34: 248–253PubMedCrossRefGoogle Scholar
  16. Patel T (2000) Apoptosis in hepatic pathophysiology. Clin Liver Dis 4: 295–317PubMedCrossRefGoogle Scholar
  17. Patel T, Gores GJ (1995) Apoptosis and hepatobiliary disease. Hepatology 21: 1725–1741PubMedGoogle Scholar
  18. Patel T, Roberts LR, Jones BA et al. (1998) Dysregulation of apoptosis as a mechanism of liver disease: an overview. Semin Liver Dis 18: 105–114PubMedCrossRefGoogle Scholar
  19. Patel T, Steer CJ, Gores GJ (1999) Apoptosis and the liver: a mechanism of disease, growth regulation, and carcinogenesis. Hepatology 30: 811–815PubMedCrossRefGoogle Scholar
  20. Pinkoski MJ, Brunner T, Green DR et al. (2000) Fas and Fas ligand in gut and liver. Am J Pysiol Gastrointest Liver Physiol 278: G354–366Google Scholar
  21. Pitot HC (1998) Hepatocyte death in hepatocarcinogenesis. Hepatology 28: 1–5PubMedCrossRefGoogle Scholar
  22. Rodrigues CM, Fan G, Ma X et al. (1998) A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 101: 2790–1799PubMedCrossRefGoogle Scholar
  23. Rosser BG, Gores GJ (1995) Liver cell necrosis:cellular mechanisms and clinical implications. Gastroenetrology 108: 252–275CrossRefGoogle Scholar
  24. Schmitz I, Kirchhoff S, Krammer PH (2000) Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 32: 1123–1136PubMedCrossRefGoogle Scholar
  25. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68: 251–306PubMedCrossRefGoogle Scholar
  26. Ziol M, Tepper M, Lohez M et al. (2001) Clinical and biological relevance of hepatocyte apoptosis in alcoholic hepatitis. J Hepatol 34: 254–260PubMedCrossRefGoogle Scholar
  27. Denk H, Stumptner C, Zatloukal K (2000) Mallory bodies revisited. J Hepatol 32: 689–702CrossRefGoogle Scholar
  28. Jensen K, Gluud C (1994) The Mallory body: morphological, clinical and experimental studies (part 1 of a literature survey). Hepatology 20: 1061–1077CrossRefGoogle Scholar
  29. Jensen K, Gluud C (1994) The Mallory body: theories on development and pathological significance (part 2 of a literature survey). Hepatology 20: 1330–1342PubMedCrossRefGoogle Scholar
  30. Lewis JH, Mullick FG, Ishak KG et al. (1990) Histopathologic analysis of suspected amiodarone hepatotoxicity. Hum Pathol 21: 59–67PubMedCrossRefGoogle Scholar
  31. Mallory FB (1911) Cirrhosis of the liver. Five different types of lesions from which it may arise. Bull John Hopkins Hosp 22: 69–75Google Scholar
  32. Poucell S, Ireton J, Valencia-Mayoral P et al. (1984) Amiodarone- associated phospholipidosis and fibrosis of the liver. Light, immunohistochemical, and electron microscopic studies. Gastroenterology 86: 926–936PubMedGoogle Scholar
  33. Schirmacher P, Dienes HP, Moll R (1998) De novo expression of nonhepatocellular cytokeratins in Mallory body formation. Virchows Arch 432: 143–152PubMedCrossRefGoogle Scholar
  34. Zatloukal K, Stumptner C, Lehner M et al. (2000) Cytokeratin 8 protects from hepatotoxicity, and its ratio to cytokeratin 18 determines the ability of hepatocytes to form Mallory bodies. Am J Pathol 156: 1263–1274PubMedCrossRefGoogle Scholar
  35. Bianchi L (1986) Necroinflammatory liver diseases. Semin Liver Dis 6: 185–198PubMedCrossRefGoogle Scholar
  36. Christoffersen P, Dietrichseon O, Faber V et al. (1972) The occurrence and significance of abnormal bile duct epithelium in chronic aggressive hepatitis. Acta Pathol Microbiol Scand (A) 80: 294–302Google Scholar
  37. Burt AD, MacSween RNM (1993) Bile duct proliferation — its true significance? Histopathology 23: 599–602PubMedCrossRefGoogle Scholar
  38. Desmet V, Roskams T, van Eyken P (1995) Ductular reaction in the liver. Path Res Pract 191: 513–524PubMedCrossRefGoogle Scholar
  39. Golding M, Sarraf C, Lalani EN et al. (1996) Reactive biliary epithelium:the product of a pluripotential stem cell compartment? Hum Pathol 27: 872–884PubMedCrossRefGoogle Scholar
  40. Green RM, Crawford JM (1995) Hepatocellular cholestasis: pathobiology and histological outcome. Semin Liver Dis 15: 360–371CrossRefGoogle Scholar
  41. Housset C (2000) Biliary epithelial cell response to cholestasis. J Hepatol 32 [suppl 2): 14–15CrossRefGoogle Scholar
  42. Lefkowitch JH (1982) Bile ductular cholestasis:an ominous histopathologic sign related to sepsis and “cholangitis lenta”. Hum Pathol 13: 19–24PubMedCrossRefGoogle Scholar
  43. Liu Z, Sakamoto T, Ezure T et al. (1998) Interleukin-6, hepatocyte growth factor and their receptors in biliary epithelial cells during a type I ductular reaction in mice: interactions between the periductal inflammatory and stromal cells and the biliary epithelium. Hepatology 28: 1260–1268PubMedCrossRefGoogle Scholar
  44. Roskams T, Campos RV, Drucker DJ et al. (1993) Reactive human bile ductules express parathyroid hormone-related peptide. Histopathology 23: 11–19PubMedCrossRefGoogle Scholar
  45. Saito JM, Maher JJ (2000) Bile duct ligation in rats induces biliary expression of cytokine-induced neutrophil chemoattractant. Gastroeneterology 118: 1157–1168CrossRefGoogle Scholar
  46. Sirica AE (1995) Ductular hepatocytes. Histol Histopathol 10: 433–456PubMedGoogle Scholar
  47. Van Eyken P, Desmet VJ (1993) Cytokeratins and the liver. Liver 13: 113–122PubMedGoogle Scholar
  48. Denk K, Scheuer PJ, Baptista A et al. (1994) Guidelines for the diagnosis and interpretation of hepatic granulomas. Histopathology 25: 209–218PubMedCrossRefGoogle Scholar
  49. Dincsoy H, Wessner RE, MacGee J (1982) Lipogranulomas in non-fatty human livers. A mineral oil induced environmental disease. Am J Clin Pathol 78: 35–41PubMedGoogle Scholar
  50. Ferrell D (1990) Hepatic granulomas: a morphologie approach to diagnosis. Surg Pathol 3: 87–106Google Scholar
  51. Valla DC, Benhamou JP (2000) Hepatic granulomas and hepatic sarcoidosis. Clin Liver Dis 4: 269–285PubMedCrossRefGoogle Scholar
  52. Arthur MJP, Mann DA, Iredale JP (1998) Tissue inhibitors of metalloproteinases, hepatic stellate cells and liver fibrosis. J Gastroenterol Hepatol 13 [suppl]: S33–38Google Scholar
  53. Bedossa P, Peltier E, Terris B et al. (1995) Transforming growth factor-beta 1 (TGF-ß1) and TGF-ß1 receptors in normal, cirrhotic, and neoplastic human livers. Hepatology 21: 760–766PubMedGoogle Scholar
  54. Benyon RC, Iredale JP (2000) Is liver fibrosis reversible? Gut 46: 443–446PubMedCrossRefGoogle Scholar
  55. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor ß in human disease. N Engl J Med 342: 1350–1358PubMedCrossRefGoogle Scholar
  56. Border WA, Noble NA (1994) Transforming growth factor (beta) in tissue fibrosis. N Engl J Med 331: 1286–1292PubMedCrossRefGoogle Scholar
  57. Brenner DA, Waterboer T, Choi SK et al. (2000) New aspects of hepatic fibrosis. J Hepatol 32 [suppl 1]: 32–38PubMedCrossRefGoogle Scholar
  58. Castilla A, Prieto J, Fausto N (1991) Transformig growth factors ß 1 and a in chronic liver disease. Effects of interferon alfa therapy. N Engl J Med 324: 933–940PubMedCrossRefGoogle Scholar
  59. Desmet VJ (1994) Fibrosis of the liver: a pathologist’s view. In: Surrenti C, Casini A, Milani S, Pinzani M (eds) Fat storing cells and liver fibrosis. Kluwer Academic Publishers, Dordrecht, pp 257–273Google Scholar
  60. Fabris C, Falleti E, Federico E et al. (1997) A comparison of four serum markers of fibrosis in the diagnosis of cirrhosis. Ann Clin Biochem 34: 151–155PubMedGoogle Scholar
  61. Friedman SL (1993) The cellular basis of hepatic fibrosis. Mechanism and treatment strategies. N Engl J Med 328: 1828–1835PubMedCrossRefGoogle Scholar
  62. Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275:2247–2250CrossRefGoogle Scholar
  63. Friedman SL, Maher JJ, Bissell DM (2000) Mechanism and therapy of hepatic fibrosis: report of the AASLD single topic basic research conference. Hepatology 32: 1403–1408PubMedCrossRefGoogle Scholar
  64. Gressner AM (1996) Mediators of hepatic fibrogenesis. Hepatogastroenterol 43: 92–103Google Scholar
  65. Hammel P, Couvelard A, O’Toole D et al. (2001) Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med 344: 418–423PubMedCrossRefGoogle Scholar
  66. Hayasaka A, Saisho H (1998) Serum markers as tools to monitor liver fibrosis. Digestion 59: 381–384PubMedCrossRefGoogle Scholar
  67. Iredale JP, Benyon RC, Pickering J et al. (1998) Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 102: 538–549PubMedCrossRefGoogle Scholar
  68. Issa R, Williams E, Trim N et al. (2001) Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growths factors. Gut 48: 548–557PubMedCrossRefGoogle Scholar
  69. Kitada T, Seki S, Ikeda K et al. (2000) Clinicopathological characterization of prion: a novel marker of activated human hepatic stellate cells. J Hepatol 33: 751–757PubMedCrossRefGoogle Scholar
  70. Knittel T, Saile B, Ramadori G (1998) Fibrogenese. Pathophysiologie und therapeutische Ansätze. Internist 39: 238–246PubMedCrossRefGoogle Scholar
  71. Korner T, Kropf J, Gressner AM (1996) Serum laminin and hyaluronan in liver cirrhosis: markers of progression with high prognostic value. J Hepatol 25: 684–688PubMedCrossRefGoogle Scholar
  72. Li D, Friedman SL (1999) Liver fibrogenesis and the role of hepatic stellate cells: new insights and prospects for therapy. J Gastroenterol Hepatol 14: 618–633PubMedCrossRefGoogle Scholar
  73. Marra F, Gentilini A, Pinzani M et al. (1997) Phosphatidylinositol-3-kinase is required for platelet-derived growth factor’s actions on hepatic stellate cells. Gastroenterology 112: 1297–1306PubMedCrossRefGoogle Scholar
  74. Nagy P, Schaff Z, Lapis K (1991) Immunohistochemical detection of transforming growth factor-ß1 in fibrotic liver diseases. Hepatology 14: 269–273PubMedCrossRefGoogle Scholar
  75. Nelson DR, Lauwers GY, Lau JY et al. (2000) Interleukin 10 treatment reduces fibrosis in patients with chronic hepatitis C: a pilot trial of interferon nonresponders. Gastroenterology 118: 655–660PubMedCrossRefGoogle Scholar
  76. Okazaki I, Watanabe T, Hozawa S et al. (2000) Molecular mechanisms of the reversibility of hepatic fibrosis: with special reference to the role of matrix metalloproteinases. J Gastroenterol Hepatol 15 [suppl]: D26–32CrossRefGoogle Scholar
  77. Olaso E, Friedman SL (1998) Molecular regulation of hepatic fibrogenesis. J Hepatol 29: 836–847PubMedCrossRefGoogle Scholar
  78. Pfeifer U (2000) Leberfibrose und Leberzirrhose. In Scifert G, von Denk H, Dienes HP, Düllmann J et al. (Hrsg) Pathologie der Leber und der Gallenwege, 2. Aufl. Springer, Berlin Heidelberg New York, S 743–771CrossRefGoogle Scholar
  79. Ramadori G, Zöhrens G, Manns M et al. (1991) Serum hyaluronate and type III pro collagen aminoterminal propeptide concentration in chronic liver disease. Relationship to cirrhosis and disease activity. Eur J Clin Invest 21: 323–330PubMedCrossRefGoogle Scholar
  80. Rockey DC (2000) The cell and molecular biology of hepatic fibrogenesis: clinical and therapeutic implications. Clin Liver Dis 4: 319–355PubMedCrossRefGoogle Scholar
  81. Sakaida I, Nagatomi A, Hironaka K et al. (1999) Quantitative analysis of liver fibrosis and stellate cell changes in patients with chronic hepatitis C after interferon therapy. Am J Gastroeneterol 94: 489–496CrossRefGoogle Scholar
  82. Schaffner F, Popper H (1963) Capillarization of hepatic sinusoids in man. Gastroenterology 44: 239–242PubMedGoogle Scholar
  83. Schuppan D, Jax C, Hahn EG (1999) Serummarker der Leberfibrose. Dtsch Med Wochenschr 124: 1213–1218PubMedCrossRefGoogle Scholar
  84. Schwarcz R, Glaumann H, Weiland O (1993) Survival and histological resolution of fibrosis in patients with autoimmune chronic active hepatitis. J Hepatol 18: 15–23CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • H. Dancygier

There are no affiliations available

Personalised recommendations