Advertisement

Mikroskopische Anatomie

  • H. Dancygier
Chapter

Zusammenfassung

Die Leber ist das größte solide Organ und die größte exokrine Drüse des Menschen. Sie nimmt eine zentrale Stellung im Stoffwechsel endogener Substanzen sowie im Abbau und in der Elimination exogen zugeführter Stoffe ein. Das Organ besteht aus Parenchym- und Mesenchymzellen, dem Gallengangsystem, Blut- und Lymphgefäßen, Nerven und der bindegewebigen extrazellulären Matrix. Tabelle 3.1.1 zeigt die zahlenmäßige Verteilung unterschiedlicher Zelltypen in der menschlichen Leber.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Akiyoshi H, Gonda T, Terada T (1998) A comparative histochemical and immunohistochemical study of aminergic, cholinergic and peptidergic innervation in rat, hamster, guinea pig, dog and human livers. Liver 18: 352–359PubMedGoogle Scholar
  2. Arias IM, Jakoby WB, Boyer JL, Fausto N, Schachter D, Shafritz DA (eds) (1994) The liver. Biology and pathobiology. Raven Press, New YorkGoogle Scholar
  3. Bioulac-Sage P, Lafon ME, Saric J et al. (1990) Nerves and perisinusoidal cells in human liver. J Hepatol 10: 105–112PubMedCrossRefGoogle Scholar
  4. Bloch EH (1970) The termination of hepatic arterioles and functional unit of the liver as determined by microscopy of the living organ. Ann NY Acad Sci 170: 78–87CrossRefGoogle Scholar
  5. Brissaud E, Sabourin C (1888) Sur la constitution lobulaire du foie et les voies de la circulation sanguine intra-hepatique. C R Soc Biol Annee 8: 757–776Google Scholar
  6. Ding WG, Fujimura M, Mori A et al. (1991) Light and electron microscopy of neuropeptide Y-containing nerves in human liver, gallbladder and pancreas. Gastroenterology 101: 1054–1058PubMedGoogle Scholar
  7. Ekataksin W (2000) The isolated artery: an intrahepatic arterial pathway that can bypass the lobular parenchyma in mammalian livers. Hepatology 31: 269–279PubMedCrossRefGoogle Scholar
  8. Ekataksin W, Wake K (1997) New concepts in biliary and vascular anatomy of the liver. Progr Liver Dis 15: 1–30Google Scholar
  9. Ekataksin W, Kaneda K (1999) Liver microvascular architecture: an insight into the pathophysiology of portal hypertension. Semin Liver Dis 19: 359–382PubMedCrossRefGoogle Scholar
  10. Elias H (1949) A re-examination of the structure of the mammalian liver 11: the hepatic lobule and its relation to the vascular and biliary systems. Am J Anat 85: 379–456PubMedCrossRefGoogle Scholar
  11. Forssmann WG, Ito S (1977) Hepatocyte innervation in primates. J Cell Biol 74: 299–313PubMedCrossRefGoogle Scholar
  12. Gardemann A, Puschell GP, Jungermann K (1992) Nervous control of liver metabolism and hemodynamics. Eur J Biochem 207: 399–411PubMedCrossRefGoogle Scholar
  13. Gerber MA, Thung SN (1978) Carcinoembryonic antigen in normal and diseased liver tissue. Am J Pathol 92: 671–680PubMedGoogle Scholar
  14. Jungermann K, Gardemann A, Beuers U et al. (1987) Regulation of liver metabolism by the hepatic nerves. Adv Enzyme Regul 26: 63–88PubMedCrossRefGoogle Scholar
  15. Kiernan F (1833) The anatomyand physiologyof the liver. Philos Trans R Soc London 123: 711–770CrossRefGoogle Scholar
  16. Lautt WW (1980) Hepatic nerves: a review of their functions and effects. Can J Physiol Pharmacol 56: 679–682CrossRefGoogle Scholar
  17. Ludwig J, Ritman EL, LaRusso NF et al. (1998) Anatomy of the human biliary system studied by quantitative computer-aided three dimensional imaging techniques. Hepatology 27: 893–899PubMedCrossRefGoogle Scholar
  18. Mac Sween RNM, Scothorne RJ (1994) Developmental anatomy and normal structure. In: MacSween RNM, Anthony PP, Scheuer PJ, Burt AD, Portmann BC (eds) Pathology of the liver. Churchill Livingstone, Edinburgh, pp 1–49Google Scholar
  19. Mall FP (1906) A study of the structural unit of the liver. Am J Anat 5: 227–308CrossRefGoogle Scholar
  20. Matsumoto T, Komori R, Magara T et al. (1979) A study of the normal structure of the human liver, with special reference to its angioarchitecture. Jikeikai Med J 26: 1–40Google Scholar
  21. Rappaport AM, Borowy ZJ, Longheed WM et al. (1954) Subdivision ofhexagonalliver lobules into a structural and functional unit; role in hepatic physiology and pathology. Anat Res 119: 11CrossRefGoogle Scholar
  22. Saxena R, Theise ND, Crawford JM (1999) Microanatomy of the human liver — exploring the hidden interfaces. Hepatology 30: 1339–1346PubMedCrossRefGoogle Scholar
  23. Seseke FG, Gardemann A, Jungermann K (1992) Signal propagation via gap junctions, a key step in the regulation of liver metabolism by the sympathetic hepatic nerves. FEBS Letters 301:265–270CrossRefGoogle Scholar
  24. Tarada T, Nakanuma Y, Ohta G (1987) Glandular elements around the intrahepatic bile ducts in man: their morphology and distribution in normal livers. Liver 7: 1–8Google Scholar
  25. Tiniakos DG, Lee JA, Burt AD (1996) Innervation of the liver: morphology and function. Liver 16: 151–160PubMedGoogle Scholar
  26. Trutmann M, Sasse D (1994) The lymphatics of the liver. Anat Embryol 190:201–209PubMedCrossRefGoogle Scholar

Hepatozyten

  1. Bainton DF (1981) The discovery of lysosomes. J Cell Biol 91: 66s–76sPubMedCrossRefGoogle Scholar
  2. Feldmann G (1989) The cytoskeleton of the hepatocyte. Structure and functions. J Hepatol 8: 380–386PubMedCrossRefGoogle Scholar
  3. Feldmann G (1992) Liver ploidy. J Hepatol 16: 7–10PubMedCrossRefGoogle Scholar
  4. Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283: 249–256PubMedCrossRefGoogle Scholar
  5. Loud AV (1968) A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol 37: 27–46PubMedCrossRefGoogle Scholar
  6. Meier PY (1988) Transport polarity of hepatocytes. Semin Liver Dis 8: 293–307PubMedCrossRefGoogle Scholar
  7. Moll R, Franke WW, Schiller DL et al. (1982) The catalogue of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31: 11–24PubMedCrossRefGoogle Scholar
  8. Moll R, Schiller DL, Franke WW (1990) Identification of protein IT of the intestinal cytoskeleton as a novel type I cytokeratin with unusual properties and expression patterns. J Cell Biol 111: 567–580PubMedCrossRefGoogle Scholar
  9. Radu A, Blobel G, Moore SM (1995) Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoproteins. Proc Natl Acad Sci USA 92: 1769–1773PubMedCrossRefGoogle Scholar
  10. Rouiller C, Bernard W (1956) “Microbodies” and the problem of mitochondrial regeneration in liver cells. J Biophys Biochem Cytol [suppl 2]: 355–358PubMedCrossRefGoogle Scholar
  11. Schroer TA, Sheetz MP (1991) Functions of microtubule-based motors. Ann Rev Physiol 53: 629–652CrossRefGoogle Scholar
  12. Stemlieb J, Quintara N (1977) The peroxisomes of human hepatocytes. Lab Invest 36: 140–149Google Scholar
  13. Van Eyken P, Desmet VJ (1993) Cytokeratins and the liver. Liver 13: 113–122PubMedGoogle Scholar
  14. Wang E, Fischmann D, Liem PKH et al. (1985) Intermediate filaments. Ann NY Acad Sci 455: 32–56PubMedCrossRefGoogle Scholar

Sinusendothelzellen

  1. Balabaud C, Boulard A, Quinton A et al. (1988) Light and transmission electron microscopy of sinusoids in human liver. In: Bioulac-Sage P, Balabaud C (eds) Sinusoids in human liver: health and disease. Kupffer Cell Foundation, pp 87–110Google Scholar
  2. Burt AD, Le Bail B, Balabaud C et al. (1993) Morphologie investigation of sinusoidal cells. Semin Liver Dis 13: 21–38PubMedCrossRefGoogle Scholar
  3. Smedsrod B, Pertoft H, Gustafson S et al. (1990) Scavenger functions of the liver endothelial cell. Biochem J 266: 313–327PubMedGoogle Scholar
  4. Smedsbrod B, DeBleeser PJ, Braet F et al. (1994) Cell biology of liver endothelial and Kupffer cells. Gut 35: 1509–1516CrossRefGoogle Scholar
  5. Wake K (1995) Structure of the sinusoidal wall in the liver. In: Wisse E, Knook DL, Wake K (eds) Cells of the hepatic sinusoid. Kupffer Cell Foundation, pp 241–246Google Scholar
  6. Wisse E, De Zanger RB, Charles K et al. (1985) The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5: 683–692PubMedCrossRefGoogle Scholar

Kupffer-Zellen

  1. Bode JG, Peters-Regehr T, Schliess F et al. (1998) Activation of mitogen-activated kinases and IL-6 release in response to lipopolysaccharides in Kupffer cells is modulated by anisoosmolarity. J Hepatol 28: 795–802PubMedCrossRefGoogle Scholar
  2. Decker K (1990) Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 192: 245–261PubMedCrossRefGoogle Scholar
  3. Wake K, Decker K, Kim A et al. (1989) Cell biology and kinetics of Kupffer cells in the liver. Int Rev Cytol 118: 173–229PubMedCrossRefGoogle Scholar

Ito-Zellen

  1. Bataller R, Nicolas JP, Ginès P et al. (1997) Arginine vasopressin induces contraction and stimulates growth of cultured human hepatic stellate cells. Gastroenterology 113: 615–624PubMedCrossRefGoogle Scholar
  2. Bioulac-Sage P, Lafon ME, Saric J et al. (1990) Nerves and perisinusoidal cells in human liver. J Hepatol 10: 105–112PubMedCrossRefGoogle Scholar
  3. Friedman SL (1996). Hepatic stellate cells. In: Boyer JL, Ockner RK (eds) Progress in liver diseases, vol XIV, Saunders, Philadelphia, pp 101–130Google Scholar
  4. Gabriel A, Kuddus RH, Rao AS et al. (1999) Down-regulation of endothelin receptors by transforming growth factor ß1 in hepatic stellate cells. J Hepatol 30: 440–450PubMedCrossRefGoogle Scholar
  5. Hautekeete ML, Geerts A (1997) The hepatic stellate (Ito) cell: its role in human liver disease. Virchows Arch 430: 195–207PubMedCrossRefGoogle Scholar
  6. Ito T (1951) Cytological studies on stellate cells of Kupffer and fat storing cells in the capillary wall of human liver. Acta Anat Nippon 26: 2Google Scholar
  7. Knittel T, Kobold D, Saile B et al. (1999) Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential. Gastroenterology 117: 1205–1221PubMedCrossRefGoogle Scholar
  8. Mallat A, Lotersztajn S (1996) Multiple hepatic functions of endothelin-1: physiopathological relevance. J Hepatol 25: 405–413PubMedCrossRefGoogle Scholar
  9. Pinzani M (1995) Hepatic stellate (ITO) cells: expanding roles for a liver-specific pericyte. J Hepatol 22: 700–706PubMedCrossRefGoogle Scholar
  10. Pinzani M, Milani S, De Franco R et al. (1996) Endothelin-1 is overexpressed in cirrhotic liver and exerts multiple effects on activated human hepatic stellate cells. Gastroenterology 110: 534–548PubMedCrossRefGoogle Scholar
  11. Pinzani M, Marra F, Carloni V (1998) Signal transduction in hepatic stellate cells. Liver 18: 2–13PubMedGoogle Scholar
  12. Ramadori G (1991) The stellate cell (Ito-cell, fat-storing cell, lipocyte, perisinusoidal cell) of the liver. N ew insights into pathophysiology of an intriguing cell. Virchows Arch B Cell Pathol 61: 147–158Google Scholar
  13. Sakaida I, Nagatomi A, Hironaka K et al. (1999) Quantitative analysis of liver fibrosis and stellate cell changes in patients with chronic hepatitis C after interferon therapy. Am J Gastroenterol 94: 489–496PubMedCrossRefGoogle Scholar
  14. Schmitt-Gräff A, Krüger S, Borchard F et al. (1991) Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am J Pathol 138: 1233–1242PubMedGoogle Scholar
  15. Wake K (1971) “stemzellen” in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am J Anat 132:429–462CrossRefGoogle Scholar

Pit-Zellen

  1. Bouwens L, Wisse E (1992) Pit cells in the liver. Liver 12: 3–9PubMedGoogle Scholar
  2. Winnock M, Barcina MG, Lukomska B et al. (1993) Liver-associated lymphocytes: role in tumor defense. Semin Liver Dis 13: 81–92PubMedCrossRefGoogle Scholar
  3. Wisse E, van’t Noordende IM, van der Meulen I et al. (1976) The pit cell: description of a new type of cell occurring in rat liver sinusoids and peripheral blood. Cell Tiss Res 173: 423–435CrossRefGoogle Scholar

Biliäre Epithelzellen

  1. Alpini G, Phillips JO, LaRusso NF (1994) The biology of biliary epithelia. In: Arias IM (ed) The liver. Biology and pathobiology, 3rd ed. Raven Press, New York, pp 623–653Google Scholar
  2. Desmet VJ (1985) Intrahepatic bile ducts under the lens. J Hepatol 1: 545–559PubMedCrossRefGoogle Scholar
  3. Sirica AE (1992) Biology of biliary epithelial cells. In: Boyer IL, Ockner RK (eds) Progress in liver diseases, vol X. Saunders, Philadelphia, pp 63–87Google Scholar
  4. Tavoloni N (1987) The intrahepatic biliary epithelium: an area of growing interest in hepatology. Semin Liver Dis 7: 280–292PubMedCrossRefGoogle Scholar
  5. Arthur MJP (1994) Matrix degradation in the liver. In: Surrenti C, Casini A, Milani S, Pinzani M (eds) Fat-storing cells and liver fibrosis. Kluwer Academic Publishers, Dordrecht, pp 110–127Google Scholar
  1. Beck K, Hunter I, Engel J (1990) Structure and function oflaminin: anatomy of a multidomain glycoprotein. FASEB J 4: 148–160PubMedGoogle Scholar
  2. Burgeson RE (1988) New collagens, new concepts. Annu Rev Cell Biol 4: 551–577PubMedCrossRefGoogle Scholar
  3. Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48: 549–554PubMedCrossRefGoogle Scholar
  4. Laurent GJ (1987) Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 252: C1–C9PubMedGoogle Scholar
  5. Musso O, Rehn M, Saarela J et al. (1998) Collagen XVIII is localized in sinusoids and basement membrane zones and expressed by hepatocytes and activated stellate cells in fibrotic human liver. Hepatology 28: 98–107PubMedCrossRefGoogle Scholar
  6. Petrides PE (1998) Binde-und Stützgewebe. In: Löffler G, Petrides PE (Hrsg) Biochemie und Pathobiochemie, 6. Aufl. Springer, Berlin Heidelberg New York, S 733–759Google Scholar
  7. Prockop DJ, Kivirikko KI, Tuderman L et al. (1979) The biosynthesis of collagen and its disorders. N Engl J Med 301: 13–23PubMedCrossRefGoogle Scholar
  8. Rojkind M, Giambrone MA, Biempica L (1979) Collagen types in normal and cirrhotic liver. Gastroenterology 76: 710–719PubMedGoogle Scholar
  9. Ruoslahti E (1988) Structure and biology of proteoglycans. Annu Rev Cell Biol 4: 229–255PubMedCrossRefGoogle Scholar
  10. Schuppan D (1990) Structure of the extracellular matrix in normal and fibrotic liver: collagens and glycoproteins. Semin Liver Dis 10: 1–10PubMedCrossRefGoogle Scholar
  11. Schuppan D, Gressner AM (1999) Function and metabolism of collagens and other extracellular matrix proteins. In: Bircher J, Benhamou J-P, McIntyre N, Rizzetto M, Rodés J (eds) Oxford textbook of clinical hepatology, 2nd ed. Oxford University Press, pp 381–407Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • H. Dancygier

There are no affiliations available

Personalised recommendations