Skip to main content

Stochastic Optimization of Risk Functions via Parametric Smoothing

  • Conference paper

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 532))

Summary

The proper analysis of polices under uncertainties has to deal with “hit-or-miss” type of situations by using appropriate risk measures. Formally it often requires the solution of dynamic stochastic optimization problems with discontinuous indicator functions of such events as ruin, underestimating costs and overestimating benefits. The available optimization techniques, in particular formulas for derivatives of risk functions, may not be applicable due to explicitly unknown probability distributions and essential discontinuities. The aim of this paper is to develop a solution technique by smoothing risk function over certain parameters, rather than over decision variables as in the classical distribution (generalized functions) theory. For smooth approximations we obtain explicit formulas for gradients in the form of expectations of stochastic vectors which can be viewed as a form of stochastic gradients for the original risk function. These axe used in the specific quasigradient procedure. We pay special attention to optimization of risk functions defined on trajectories of discrete time stochastic processes dependent on stopping times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmussen S. (2000), Ruin Probabilities, World Scientific, Singapore.

    Google Scholar 

  2. Beard R.E., Pentikäinen T. and Pesonen E. (1984), Risk Theory. The Stochastic Basis of Insurance, London, Chapman and Hall.

    Google Scholar 

  3. Cacoullas T. (1966), Estimation of a multivariate density, Ann. Inst. Statist. Math., 18, pp. 179–189.

    Article  Google Scholar 

  4. Clarke F.H. (1983), Optimization and Nonsmooth Analysis, Wiley.

    Google Scholar 

  5. Consiglio A., Cocco F. and Zenios S. (2000), Asset and Liability Modeling for Participating Policies with Guaranties, Working Paper 00-41-C, The Wharton School, University of Pennsylvania.

    Google Scholar 

  6. Devroye L.P. (1979) On pointwise and the integral convergence of recursive kernel estimation of probability densities, Util. Math., 15, pp.113–128.

    Google Scholar 

  7. Devroye L.P. (1987), A course in density estimation, Boston e.a., Birhäuser.

    Google Scholar 

  8. Ermoliev Y.M. (1976), Methods of stochastic programming, Moscow, Nauka.

    Google Scholar 

  9. Ermoliev Yu. (1988), Stochastic quasigradient methods, in: Numerical Techniques for Stochastic Optimization, Yu. Ermoliev and R.J.-B. Wets (Eds.), Springer-Verlag, pp. 141–185.

    Google Scholar 

  10. Ermoliev Yu.M., Ermolieva T.Y., MacDonald G. and Norkin V.I. (1998), On the design of catastrophic risk portfolios, IIASA Interim Report IR-98-056/August, Laxenburg, Austria.

    Google Scholar 

  11. Ermoliev Y.M., Ermolieva T.Y., MacDonald G.J. and Norkin V.I. (2000), Stochastic Optimization of Insurance Portfolios for Managing Exposure to Catastrophic Risks, Annals of Operations Research, Vol. 99, pp. 207–225.

    Article  Google Scholar 

  12. Ermoliev Y.M., Ermolieva T.Y., MacDonald G. and Norkin V.I. (2001), Problems of catastrophic risks insurance, Kibernetika i sistemnyi analiz (in Russian, English translation in Cybernetics and Systems Analysis), N 2, 99–110.

    Google Scholar 

  13. Ermolieva T., Ermoliev Y., Linnerooth-Bayer J. and Galambos I., The Role of Financial Instruments in Integrated Catastrophic Flood Management, forthcoming in Multinational Finance Journal

    Google Scholar 

  14. Ermoliev Yu. and Gaivoronski A.A. (1992), Stochastic quasigradient methods for optimization of discrete event systems Annals of Operations Research, Vol. 39, pp. 1–39.

    Article  Google Scholar 

  15. Ermoliev Yu.M. and Norkin V.I. (1997), On nonsmooth and discontinuous problems of stochastic systems optimization, European J. of Operational Research, Vol. 101, pp.230–244.

    Article  Google Scholar 

  16. Ermoliev Yu.M. and Norkin V.I. (1998), Stochastic generalized gradient method for solving nonconvex nonsmooth stochastic optimization problems, Kibernetika i sistemny analiz, N 2, 50–71 (In Russian, English translation in Cybernetics and systems analysis, V. 34, N 2, and in IIASA Interim Report IR-97-021, Int. Inst. for Appl. Syst. Analysis, Laxenburg, Austria, 1997).

    Google Scholar 

  17. Ermoliev Yu.M., Norkin V.I. and Wets R.J.-B. (1995), The minimization of semi-continuous functions: Mollifier subgradients, SIAM J. Contr. and Opt, No.1, pp.149–167.

    Google Scholar 

  18. Keyzer M., Ermoliev Y. and Norkin V., General equilibrium and welfare modeling in spatial continuum: a practical framework for land use planning, Interim Report IR-01-033, Intern. Inst. for Appl. Syst. Analysis, Laxenburg, Austria, 2001, 28 p.

    Google Scholar 

  19. Kibzun A.I. and Kan Yu.S. (1996), Stochastic Programming Problems with Probability and Quantile Functions, John Willey & Sons.

    Google Scholar 

  20. Kibzun A. and Uryasev S. (1998), Differentiability of probability function, Stochastic Analysis and Applications, Vol. 16, No. 6, pp. 1101–1128.

    Article  Google Scholar 

  21. Lepp R. (1983), Stochastic approximation type algorithm for maximization of probability function, Izvestia Akademii Nauk Estonskoi SSR. Fizika i matem-atika (Communications of Academy of Sciences of Estonia. Physics and Math.), Vol. 32, No. 2, pp. 150–156.

    Google Scholar 

  22. Marti K. (1995), Differentiation of Probability functions: The Transformation Method, Computers Math. Applic., Vol. 30, No. 3–6, pp. 361–382.

    Article  Google Scholar 

  23. Marti K. (1996), Differentiation Formulas for Probability functions: The Transformation Method, Mathematical Programming Journal, Series B, Vol. 75, No. 2.

    Google Scholar 

  24. Mikhalevich V.S., Gupal A.M. and Norkin V.I. (1987), Methods of Nonconvex Optimization, Moscow, Nauka.

    Google Scholar 

  25. Norkin V.I. (1986), Stochastic Generalized Differentiable Functions in the Problem of Nonconvex Nonsmooth Stochastic Optimization, Cybernetics (English translation from Russian of Kibernetika), Vol. 22, N 6, pp. 804–809.

    Article  Google Scholar 

  26. Norkin V.I. The analysis and optimization of probability functions, Working Paper WP-93-6, Int. Inst. for Appl. Syst. Analysis (IIASA), Laxenburg, Austria, 1993.

    Google Scholar 

  27. Norkin V.I. and Roenko N.V. (1991), α-Concave Functions and Measures and Their Applications, Kibernet. Sistem. Anal., No. 6, pp. 77–88 (in Russian, English translation in: Cybernet. Sustems Anal., Vol. 27, pp. 860–869).

    Google Scholar 

  28. Nurminski E.A. (1979), Numerical methods for solving deterministic and stochastic nonlinear minimax problems, Kiev, Naukova Dumka.

    Google Scholar 

  29. Prékopa A. (1995) Stochastic programming, Kluver Academic Publishers.

    Google Scholar 

  30. Raik E. (1975), Differentiability on parameters of the probability function and stochastic pseudogradient method for its optimization, Izvestia Akademii Nauk Estonskoi SSR, Fizika i Matematika (Communications of the Estonian Academy of Sciences, Physics and Mathematics), Vol. 24, N. 1, pp. 3–6.

    Google Scholar 

  31. Rockafellar R.T. and Uryasev S. (2000), Optimization of Conditional Value at Risk, The Journal of Risk, Vol. 2, No. 3, pp.21–41.

    Google Scholar 

  32. Rockafellar R.T. and Wets R.J.-B. (1998), Variational Analysis, Berlin, Springer-Verlag.

    Book  Google Scholar 

  33. Rubinstein R. (1992), Sensitivity Analysis of Discrete Event Systems by the “Push Out” Method, Annals of Operations Research, 39.

    Google Scholar 

  34. Tretiakov G. (2002), Quasi-Gradient Algorithms for Solving Stochastic Programming Problems with Probability Function. New Formula for Probability Function Gradient, Lecture Notes in Economics and Mathematical Systems, Vol. 513.

    Google Scholar 

  35. Uryasev S. (1995), Derivatives of probability functions and some Applications, Annals of Operations Research, 56, pp.287–311.

    Article  Google Scholar 

  36. Wets R.J.-B. (1996), Challenges in stochastic programming, Math. Progr., Vol.75, pp.115–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ermoliev, Y., Norkin, V. (2004). Stochastic Optimization of Risk Functions via Parametric Smoothing. In: Marti, K., Ermoliev, Y., Pflug, G. (eds) Dynamic Stochastic Optimization. Lecture Notes in Economics and Mathematical Systems, vol 532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55884-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55884-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40506-1

  • Online ISBN: 978-3-642-55884-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics