Skip to main content

Reflections on Output Analysis for Multistage Stochastic Linear Programs

  • Conference paper

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 532))

Abstract

When solving a dynamic decision problem under uncertainty it is essential to choose or to build a suitable model taking into account the nature of the real-life problem, the character and availability of the input data, etc. There exist hints when to use stochastic dynamic programming models or multiperiod and multistage stochastic programs. Still, it is difficult to provide a general recipe. We refer to recent papers [1, 15] which characterize the main features and basic requirements of these models and indicate the cases which allow for multimodeling and comparisons or for exploitation of different approaches within one decision problem.

For both approaches, solution procedures are mostly based on an approximation scheme and it is important to relate the optimal value and optimal solutions of an approximating problem and the underlying one. It is interesting to recognize that methods of output analysis for stochastic dynamic programs were developed already in the eighties, cf. [25] and references ibidem. Regarding the solution method — the backward recursion connected with the principle of optimality — special emphasis was put on properties of discretization of state and control spaces.

We shall focus on multistage stochastic linear programs with recourse and with already given horizon and stages, that result by approximation of the underlying probability distribution. It turns out that generalization of various results well-known for two-stage stochastic linear programs to the multistage problems is not straightforward and it requires various additional assumptions, e.g., the interstage independence. We shall discuss possible generalizations of output analysis methods as delineated in [10].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertocchi, M., Dupačov#x00E1;, J., Moriggia, V. (2001): Horizon and stages in applications of stochastic programming in finance, submitted to Ann. Oper. Res.

    Google Scholar 

  2. Birge, J. R., Lou veaux, F. (1997): Introduction to stochastic programming. Springer, New York

    Google Scholar 

  3. Chen, Z., Consigli, G., Dempster, M. A. H., Hicks-Pedrón, N. (1997): Towards sequential sampling algorithms for dynamic portfolio management. In: Zopounidis, C. (ed) New operational tools for the management of financial risks. Kluwer, Dordrecht, pp. 197–211

    Google Scholar 

  4. Dempster, M. A. H. (1998): Sequential importance sampling algorithms for dynamic stochastic programming. WP 32/98, Judge Inst. of Management Studies, University of Cambridge

    Google Scholar 

  5. Dupačov#x00E1;, J. (1987): The minimax approach to stochastic programming and an illustrative application. Stochastics, 20, 73–88

    Article  Google Scholar 

  6. Dupačov#x00E1;, J. (1995): Multistage stochastic programs: The state-of-the-art and selected bibliography. Kybernetika, 31, 151–174

    Google Scholar 

  7. Dupačov#x00E1;, J. (1995): Bounds for stochastic programs in particular for recourse problems. WP-95-085, IIASA Laxenburg

    Google Scholar 

  8. Dupačov#x00E1;, J. (1995): Postoptimality for multistage stochastic linear programs. Ann. Oper. Res., 56, 65–78

    Article  Google Scholar 

  9. Dupačov#x00E1;, J. (1996): Uncertainty about input data in portfolio management. In: Bertocchi, M. et al. (eds) Modelling techniques for financial markets and bank management. Physica Verlag, Heidelberg, pp. 17–33

    Chapter  Google Scholar 

  10. Dupačov#x00E1;, J. (2001): Output analysis for approximated stochastic programs. In: Uryasev, S., Pardalos, P. M. (eds) Stochastic optimization: Algorithms and applications. Kluwer, Dordrecht, pp. 1–29

    Google Scholar 

  11. Dupačov#x00E1;, J. (2002): Applications of stochastic programming: Achievements and questions. European J. Oper. Res., 140, 281–290

    Article  Google Scholar 

  12. Dupačov#x00E1;, J., Consigli, G., Wallace, S.W. (2000): Scenarios for multistage stochastic programs. Ann. Oper. Res., 100, 25–53

    Article  Google Scholar 

  13. Dupačov#x00E1;, J., Gröwe-Kuska, N., Römisch, W. (2003): Scenario reduction in stochastic programming: An approach using probability metrics. Math. Progr. A, 95, 493–511

    Article  Google Scholar 

  14. Dupačov#x00E1;, J., Hurt, J., Štěpán, J. (2002) Stochastic modeling in economics and finance, Part II. Kluwer, Dordrecht

    Google Scholar 

  15. Dupačov#x00E1;, J., Sladký, K. (2002) Comparison of multistage stochastic programs with recourse and stochastic dynamic programs with discrete time. ZAMM, 82, 753–765

    Article  Google Scholar 

  16. Dupačov#x00E1;, J., Wets, R. J.-B. (1988): Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems. Ann. Statist., 16, 1517–1549

    Article  Google Scholar 

  17. Edirisinghe, N. C. P., Ziemba, W. T. (1992): Tight bounds for stochastic convex programs. Oper. Res., 40, 660–677

    Article  Google Scholar 

  18. Fiedler, O., Römisch, W. (1995): Stability in multistage stochastic programming. Ann. Oper. Res., 56, 79–93

    Article  Google Scholar 

  19. Prauendorfer, K. (1996): Barycentric scenario trees in convex multistage stochastic programming. Math. Progr., 75, 277–293

    Google Scholar 

  20. Gol’shtein, E. G. (1970): Vypukloje programmirovanije. Elementy teoriji. Nauka, Moscow. [Theory of convex programming, Translations of Mathematical Monographs, 36, American Mathematical Society, Providence RI, 1972].

    Google Scholar 

  21. Hønd, K., Wallace, S. W. (2001): Generating scenario trees for multistage decision problems. Manag. Sc., 47, 295–307

    Google Scholar 

  22. Kall, P., Stoyan, D. (1982): Solving stochastic programming problems with recourse including error bounds. Math. Operationsforschung Statist. Ser. Optimization, 13, 431–447.

    Article  Google Scholar 

  23. Kaňková, V. (2000): Multistage stochastic programming; Stability, approximation and Markov dependence. In: Inderfurth, K. et al. (eds) Operations research proceedings 1999, Springer, Berlin, pp. 136–141

    Google Scholar 

  24. King, A. J., Wets, R. J.-B. (1990): Epi-consistency of convex stochastic programs. Stochastics and Stochastics Reports, 34, 83–92

    Google Scholar 

  25. Langen, H-J. (1981): Convergence of dynamic programming models. Mathematics of Oper. Res., 6, 493–512

    Article  Google Scholar 

  26. Mak Wai-Kei, Morton, D. P., Wood, R. K. (1999): Monte Carlo bounding techniques for determining solution quality in stochastic programs. OR Letters, 24, 47–56

    Google Scholar 

  27. Norkin, V. I., Pflug, G. Ch., Ruszcynski, A. (1998): A branch and bound method for stochastic global optimization. Math. Progr., 83, 425–450

    Google Scholar 

  28. Olsen, P. (1976): Discretization of multistage stochastic programming problems. Math. Programming Study, 6, 111–124

    Article  Google Scholar 

  29. Olsen, P. (1976): Multistage stochastic programming with recourse: The equivalent deterministic problem. SIAM J. Control Optim., 14, 495–517

    Article  Google Scholar 

  30. Pflug, G. Ch. (2001): Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Progr. B, 89, 251–271

    Article  Google Scholar 

  31. Rachev, S. T., Römisch, W. (2002): Quantitative stability of stochastic programs: The approach via probability metrics. Mathematics of Operations Research 27, 792–818

    Article  Google Scholar 

  32. Römisch, W., Wets, R. J.-B. (2001): Stability of ϵ-solutions to multistage stochastic programs. Manuscript, Inst. of Mathematics, Humboldt University, Berlin

    Google Scholar 

  33. Schürle, M. (1998): Zinsmodelle in der stochastischen Optimierung mit Anwendungen im Asset-& Liability-Management. Bank und finanzwirtschaftliche Forschungen 279, P. Haupt Verlag, Bern

    Google Scholar 

  34. Shapiro, A. (1991): Asymptotic analysis of stochastic programs. Ann. Oper. Res., 30, 169–186

    Article  Google Scholar 

  35. Shapiro, A. (2002): Statistical inference of multistage stochastic programming problems. Preprint, Georgia Inst. of Technology, Atlanta

    Google Scholar 

  36. Shapiro, A., Homem-de-Mello, T. (2000): On rate of convergence of Monte Carlo approximations of stochastic programs. SIAM J. Optimization, 11, 70–86

    Article  Google Scholar 

  37. Wets, R. (1966): Programming under uncertainty: The solution set. SIAM J. Appl. Math., 14, 1143–1151

    Article  Google Scholar 

  38. Wets, R. (1972): Stochastic programs with recourse: A basic theorem for multistage problems. Z. Wahrscheinlichkeitstheorie verw. Geb., 21, 201–206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dupačová, J. (2004). Reflections on Output Analysis for Multistage Stochastic Linear Programs. In: Marti, K., Ermoliev, Y., Pflug, G. (eds) Dynamic Stochastic Optimization. Lecture Notes in Economics and Mathematical Systems, vol 532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55884-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55884-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40506-1

  • Online ISBN: 978-3-642-55884-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics