Skip to main content

Quantum Mechanical Studies of Boron Clustering in Silicon

  • Conference paper
High Performance Computing in Science and Engineering ’03
  • 303 Accesses

Abstract

Boron-interstitial clusters (BICs) are known to be a key problem to controlling diffusion and activation of ultra-shallow boron implants in ULSI silicon device technology. During post-implantation annealing the self-interstitials, which had been created by the radiation damage, mediate fast transient diffusion of boron, during which stable and metastable BICs are formed. The BICs are either electrically inactive or the number of holes they can provide per number of boron atoms is significantly less than one. This causes a significant decrease in the activation rate. Therefore, sophisticated annealing strategies have to be developed to regain isolated boron substitutionals from BICs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Pelaz, G. H. Gilmer, J.-J. Gossmann, and C. S. Raferty. Appl. Phys. Lett, 74:3657, 1999.

    Article  Google Scholar 

  2. J. Zhu, T. Diaz de la Rubia, L. H. Yang, C. Malhoit, and G. H. Gilmer. Phys. Rev. B, 64:4741, 1996.

    Article  Google Scholar 

  3. M. J. Caturla, M. D. Johnson, and T. Diaz de la Rubia. Appl. Phys. Lett., 72:2736, 1998.

    Article  Google Scholar 

  4. J. Zhu. Comput. Mater. Sci., 12:309, 1998.

    Article  Google Scholar 

  5. T. J. Lenosky, B. Sadigh, M.-J. Caturla S. K. Theiss, and T. Diaz de la Rubia. Appl. Phys. Lett, 77:1834, 2000.

    Article  Google Scholar 

  6. S. Chakravarthi and S. T. Dunham. J. Appl. Phys., 89:3650, 2001.

    Article  Google Scholar 

  7. X.-Y. Liu, W. Windl, and M. P. Masquelier. Appl. Phys. Lett, 77:2018, 2000.

    Article  Google Scholar 

  8. W. Windl, X.-Y. Liu, and M. P. Masquelier. Phys. Stat. Sol. (b), 226:37, 2001.

    Article  Google Scholar 

  9. P. Deák. In Computational Materials Science, volume in print of Proc. of the NATO ASI, Dordrecht, Sept. 2001. Kluwer Acad. Publ.

    Google Scholar 

  10. B. Sadigh, Th. J. Lenosky, S. K. Theiss, M.-J. Caturla, T. Diaz de la Rubia, and M. A. Foad. Phys. Rev. Lett, 83:4341, 1999.

    Article  Google Scholar 

  11. W. Windl, M. M. Bunea, R. Stumpf, S. T. Dunham, and M. P. Masquelie. Phys. Rev. Lett, 83:4345, 1999.

    Article  Google Scholar 

  12. M. Hakala, M. J. Puska, and R. M. Nieminen. Phys. Rev. B, 61:8155, 2000.

    Article  Google Scholar 

  13. L. Pelaz, V. C. Venezia, J.-J. Gossmann, G. H. Gilmer, A. T. Fiory, M. Jaraiz, and J. Barbolia. Appl. Phys. Lett, 75:662, 1999.

    Article  Google Scholar 

  14. M. Uematsu. J. Appl. Phys., 84:4871, 1998.

    Article  Google Scholar 

  15. W-W. Luo and P. Clancy. J. Appl. Phys., 89:1596, 2001.

    Article  Google Scholar 

  16. J. Yamauchi, N. Aoki, and I. Mizushima. Phys. Rev. B, 63:073202–1, 2001.

    Article  Google Scholar 

  17. P. J. M. Smulders, D. O. Boerma, B. Bech Nielsen, and M. L. Swanson. Nucl. Instr. & Methods, 45:438, 1990.

    Article  Google Scholar 

  18. J. F. Angress, A. R. Goodwin, and S. D. Smith. Proc. Roy, Soc. London Ser. A, 287:64, 1965.

    Article  Google Scholar 

  19. R. D. Harris, J. L. Newton, and G. D. Watkins. Phys. Rev. B, 36:1094, 1987.

    Article  Google Scholar 

  20. I. Mizushima, M. Watanabe, A. Murakoshi, M. Hotta, M. Kashiwagui, and M. Yoshiki. Appl. Phys. Lett, 63:373, 1993.

    Article  Google Scholar 

  21. M. Okamoto, K. Hashimoto, and K. Takaynagi. Appl. Phys. Lett, 70:978, 1997.

    Article  Google Scholar 

  22. E. Artacho, D. Sanchez-Portal, P. Ordejon, A. Garcia, and J. M. Soler. Phys. Stat. Sol. (b), 215:809, 1999.

    Article  Google Scholar 

  23. N. Troullier and J. L. Martins. Phys. Rev. B, 43:1993, 1991.

    Article  Google Scholar 

  24. L. Kleinman and D. M. Bylander. Phys. Rev. Lett, 48:1425, 1982.

    Article  Google Scholar 

  25. J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. B, 77:3865, 1996.

    Article  Google Scholar 

  26. J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. B, 78:1396, 1997.

    Google Scholar 

  27. H. J. Monkhorst and J. K. Pack. Phys. Rev. B, 13:5188, 1976.

    Article  MathSciNet  Google Scholar 

  28. S. Ogut and J. R. Chelikowsky. Phys. Rev. Lett, 83:3512, 1999.

    Google Scholar 

  29. S. D. Smith and J. F. Angress. Phys. Letters, 6:131, 1963.

    Article  Google Scholar 

  30. M. Chandrasekhar, H. R. Chandrasekhar, M. Grimsditch, and M. Cardona. Phys. Rev. B, 22:4825, 1980.

    Article  Google Scholar 

  31. A. K. Tipping and R. C. Newman. Semicond. Sci. & Technol, 2:389, 1987.

    Article  Google Scholar 

  32. R. C. Newman and R. S. Smith. Phys. Letters, 24A:671, 1967.

    Article  Google Scholar 

  33. R. S. Bean, S. R. Morrison, R. C. Newman, and R. S. Smith. J. Phys. C: Sol. State Phys., 5:379, 1972.

    Article  Google Scholar 

  34. K. Laithwaite, R. C. Newman, and D. H. J. Totterdell. J. Phys. C: Sol. State Phys., 8:236, 1975.

    Article  Google Scholar 

  35. K. Thonke, J. Weber, J. Wagner, and R. Sauer. Physica B, 116:252, 1983.

    Article  Google Scholar 

  36. K. Thonke, N. Burger, G. D. Watkins, and R. Sauer. Proc. 13th Int. Conf. On Defects in Semicond., page p. 823, 1984.

    Google Scholar 

  37. P. Deak, A. Gali, A. Solyom, P. Ordejon, K. Kamaras, and G. Battistig. J. Phys: Cond. Matter, 15:4967, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Déak, P., Gali, Á., Pichler, P., Ryssel, H. (2003). Quantum Mechanical Studies of Boron Clustering in Silicon. In: Krause, E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering ’03. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55876-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55876-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40850-5

  • Online ISBN: 978-3-642-55876-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics