Skip to main content
  • 292 Accesses

Summary

The project NHLRes is concerned with the simulation of aircraft aerodynamics and thus belongs to the research field of computational fluid dynamics (CFD) for aerospace applications. NHLRes comprises the numerical simulation of the viscous flow around transport aircraft high lift configurations based on the solution of the Reynolds-averaged Navier-Stokes equations. The project NHLRes II, a follow-on activity of the NHLRes project [1], consists of three parts representing a analysis of complex 3D-flow features, wake vortex simulations and an optimization task for selected three-dimensional high lift flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Melber, S.; Wild, J.; Rudnik, R.: Numerical High Lift Research-NHLRes. Annual Review 2001. High Performance Computing in Science and Engineering ’02, Springer-Verlag Berlin, Heidelberg, New York, 2002, pp. 406–421.

    Google Scholar 

  2. Kiock, R: The ALVAST Model of DLR. DLR IB 129–96/22, 1996.

    Google Scholar 

  3. Kallinderis, Y.: Hybrid Grids and Their Applications. Handbook of Grid Generation, CRC Press, Boca Raton / London / New York / Washington, D.C., pp. 25–1–25–18, 1999.

    Google Scholar 

  4. Puffert-Meissner, W.: ALVAST Half-Model wind-tunnel Investigations and Comparison with Full-Span Model Results. DLR IB 129–96/20, 1996.

    Google Scholar 

  5. Rogers, S.E.; Roth, K.: CFD Validation of High-Lift Flows with significant Wind-Tunnel Effects. AIAA paper 2000–4218, 2000.

    Google Scholar 

  6. Kroll, N.; Rossow, C.-C; Becker, K.; Thiele, F.: MEGAFLOW-A Numerical Flow Simulation System. 21st ICAS congress, 1998, Melbourne, 13.9.–18.9.1998, ICAS–98–2.7.4, 1998.

    Google Scholar 

  7. Dacles-Mariani, J.; Zilliac, G.G.: Numerical/Experimental Study of a Wingtip Vortex in the Near Field. AIAA Journal, No. 4, April 1996.

    Google Scholar 

  8. Morton, S.A.; Forsythe, J.R.; Mitchell, A.M.; Hajek, D.: DES and RANS Simulations of Delta Wing vortical Flows. AIAA-paper 2002–0587, 2002.

    Google Scholar 

  9. Spalart, P. R.; Allmaras, S.R.: A One-Equation Turbulence Model for aerodynamic Flows. La Recherche Aerospatiale, Nr. 1, 5–21, 1994.

    Google Scholar 

  10. Edwards, J.R.; Chandra, S.: Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields. AIAA Journal, No. 4, April 1996.

    Google Scholar 

  11. Melber, S.: Wirbelkorrektur fuer Ein-und Zweigleichungs-Turbulenzmodelle und Implementation fuer das Spalart-Allmaras Turbulenzmodell in den Stroemungsloeser DLR-TAU. DLR IB 124–2002/17, 2002.

    Google Scholar 

  12. Hoheisel, H.: Aerodynamische Effekte bei der Zelle-Triebwerksintegration von Verkehrsflugzeugen. DLR IB 129–99/29, 1999.

    Google Scholar 

  13. Melber, S.: 3D RANS-Simulations for High-Lift Transport Aircraft Configurations with Engines. DLR IB 124–2002/27, 2002.

    Google Scholar 

  14. J.D. Crouch: Instability and transient growth of two trailing-vortex pairs. J. Fluid Mech., Vol. 350, pp. 311–330, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Fabre, L. Jacquin: Stability of a four-vortex aircraft wake model. Phys.Fluids, Vol. 12, No. 10, pp. 2438–2443, 2000.

    Article  MathSciNet  Google Scholar 

  16. R. Steijl: Computational Study of Vortex Pair Dynamics. Ph.D. thesis, University of Twente, Netherlands, 2001.

    Google Scholar 

  17. P.K. Smolarkiewicz, L.G. Margolin: MPDATA: A finite-difference solver for geophysical flows. J.Computational Physics, No. 140, pp. 459–479, 1998.

    Google Scholar 

  18. L.F. Sampine, M.K. Gordon: Computer Solution of Ordinary Differential Equations: the Initial Value Problem. Freeman, 1975.

    Google Scholar 

  19. E. Stumpf: Numerical Study of Four-Vortex Aircraft Wakes. Accepted for publication in Notes Num. Fluid Mech., 2003.

    Google Scholar 

  20. Brodersen, O., Hepperle, M., Ronzheimer, A., Rossow, C.-C., Schoning, B.: The Parametric Grid Generation System MEGACADS. Proc. of the 5th Intern. Conference on Numerical Grid Generation in Computational field Simulations 1996, Mississippi, Ed.: Soni, B.K., Thompson, J.F., Hauser, J., Eisemann, P., pp. 353–362, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Melber-Wilkending, S., Stumpf, E., Wild, J., Rudnik, R. (2003). Numerical High Lift Research II. In: Krause, E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering ’03. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55876-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55876-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40850-5

  • Online ISBN: 978-3-642-55876-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics