Skip to main content

Gas-Phase Epitaxy Grown InP(001) Surfaces From Real-Space Finite-Difference Calculations

  • Conference paper
High Performance Computing in Science and Engineering ’03

Summary

Density-functional calculations based on finite-difference discretization and multigrid acceleration are used to explore the atomic and spectroscopic properties of P-rich InP(001)(2x1) surfaces grown in gas-phase epitaxy. These surfaces have been reported to consist of a semiconducting monolayer of buckled phosphorus dimers. This apparent violation of the electron counting principle was explained by effects of strong electron correlation. Our calculations show that the (2x1) reconstruction is not at all a clean surface: it is induced by hydrogen adsorbed in an alternating sequence on the buckled P-dimers. Thus, the microscopic structure of the InP growth plane relevant to standard gas-phase epitaxy conditions is resolved and shown to obey the electron counting rule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Article  Google Scholar 

  2. W. G. Schmidt, J. L. Fattebert, J. Bernholc, and F. Bechstedt, Surf. Rev. Lett. 6, 1159 (1999).

    Article  Google Scholar 

  3. P. H. Hahn, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 88, 016402 (2002).

    Article  Google Scholar 

  4. W. G. Schmidt, S. Glutsch, P. H. Hahn, and F. Bechstedt, Phys. Rev. B 67, 085307 (2003).

    Article  Google Scholar 

  5. A. Brandt, Math. Comp. 31, 333 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  6. E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev. B 52, R5471 (1995).

    Article  Google Scholar 

  7. E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev. B 54, 14362 (1996).

    Article  Google Scholar 

  8. J. Bernholc, E. L. Briggs, C. Bungaro, M. B. Nardelli, J. L. Fattebert, K. Rapcewicz, C. Roland, W. G. Schmidt, and Q. Zhao, phys. stat. sol. (b) 217, 685 (2000).

    Article  Google Scholar 

  9. J. L. Fattebert and J. Bernholc, Phys. Rev. B 62, 1713 (2000).

    Article  Google Scholar 

  10. J. L. Fattebert, J. Comput. Phys. 149, 75 (1999).

    Article  MATH  Google Scholar 

  11. W. Mönch, Semiconductor Surfaces and Interfaces (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  12. Q.-K. Xue, T. Hashizume, and T. Sakurai, Prog. Surf. Sci. 56, 1 (1997).

    Article  Google Scholar 

  13. W. G. Schmidt, Appl. Phys. A 75, 89 (2002).

    Article  Google Scholar 

  14. L. Li, B.-K. Han, Q. Fu, and R. F. Hicks, Phys. Rev. Lett. 82, 1879 (1999).

    Article  Google Scholar 

  15. P. Vogt, T. Hannappel, S. Visbeck, K. Knorr, N. Esser, and W. Richter, Phys. Rev. B 60, R5117 (1999).

    Article  Google Scholar 

  16. M. D. Pashley, Phys. Rev. B 40, 10481 (1989).

    Article  Google Scholar 

  17. L. Li, B.-K. Han, D. Law, C. H. Li, Q. Fu, and R. F. Hicks, Appl. Phys. Lett. 683, 75 (1999).

    Google Scholar 

  18. L. Li, Q. Fu, C. H. Li, B.-K. Han, and R. F. Hicks, Phys. Rev. B 61, 10223 (2000).

    Article  Google Scholar 

  19. B. X. Yang and H. Hasegawa, Jpn. J. Appl. Phys. 33, 742 (1994).

    Article  Google Scholar 

  20. K. B. Ozanyan, P. J. Parbrook, M. Hopkinson, C. R. Whitehouse, Z. Sobiesierski, and D. I. Westwood, J. Appl. Phys. 82, 474 (1997).

    Article  Google Scholar 

  21. V. P. LaBella, Z. Ding, D. W. Bullock, C. Emery, and P. M. Thibado, J. Vac. Sci. Technol. A 18, 1492 (2000).

    Article  Google Scholar 

  22. O. Pulci, K. Lüdge, W. G. Schmidt, and F. Bechstedt, Surf. Sci. 464, 272 (2000).

    Article  Google Scholar 

  23. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  Google Scholar 

  24. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  25. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  Google Scholar 

  26. J. R. Chelikowski, N. Troullier, and Y. Saad, Phys. Rev. Lett. 72, 1240 (1994).

    Article  Google Scholar 

  27. L. Collatz, The Numerical Treatment of Differential Equations (Springer-Verlag, Berlin, 1966).

    Google Scholar 

  28. J. L. Fattebert, BIT 36, 509 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  29. W. G. Schmidt, P. H. Hahn, and F. Bechstedt, in High Performance Computing in Science and Engineering 2001 (Springer-Verlag, Berlin, 2002), Chap. GaAs and In As (001) Surface Structures from Large-scale Real-space Multigrid Calculations, p. 178.

    Google Scholar 

  30. W. G. Schmidt, Appl. Phys. A 65, 581 (1997).

    Article  Google Scholar 

  31. L. D. Landau and E. M. Lifshitz, Lehrbuch der Theoretischen Physik (Akademie-Verlag, Berlin, 1987), Vol. 5.

    Google Scholar 

  32. F. Bechstedt, in Festkoperprobleme / Advances in Solid State Physics, edited by U. Rossler (Vieweg, Braunschweig/Wiesbaden, 1992), Vol. 32, p. 161.

    Google Scholar 

  33. W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, Phys. Rev. B. 61, R16335 (2000).

    Article  Google Scholar 

  34. J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).

    Article  Google Scholar 

  35. W. G. Schmidt, P. H. Hahn, F. Bechstedt, N. Esser, P. Vogt, A. Wange, and W. Richter, Phys. Rev. Lett. 90, 126101 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, W.G., Hahn, P.H., Seino, K., Preuß, M., Bechstedt, F. (2003). Gas-Phase Epitaxy Grown InP(001) Surfaces From Real-Space Finite-Difference Calculations. In: Krause, E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering ’03. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55876-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55876-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40850-5

  • Online ISBN: 978-3-642-55876-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics