Skip to main content

How Do Droplets Depend on the System Size? Droplet Condensation and Nucleation in Small Simulation Cells

  • Conference paper
  • 303 Accesses

Summary

Using large scale grandcanonical Monte Carlo simulations in junction with a multicanonical reweighting scheme we investigate the liquid-vapor transition of a Lennard—Jones fluid. Particular attention is focused on the free energy of droplets and the transition between different system configurations as the system tunnels between the vapor and the liquid state as a function of system size. The results highlight the finite size dependence of droplet properties in the canonical ensemble and free energy barriers along the path from the vapor to the liquid in the grandcanonical ensemble.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.C. Zettelmoyer (ed.): Nucleation (Marcel Dekker, New York, 1969)

    Google Scholar 

  2. J.D. Gunton, M. San Miguel, and P.S. Salni, in: Phase Transitions and Critical Phenomena, Vol. 8. Eds. C. Domb and J.L. Lebowitz (Academic Press, London, 1983) p. 267

    Google Scholar 

  3. K. Binder: Rep. Progr. Phys. 50, 783 (1987)

    Article  Google Scholar 

  4. F.F. Abraham: Homogeneous Nucleation Theory (Academic Press, New York, 1974)

    Google Scholar 

  5. K. Binder and D. Stauffer: Adv. Phys. 25, 343 (1976)

    Article  Google Scholar 

  6. K. Binder and M.H. Kalos: J. Stat. Phys. 22, 363 (1980)

    Article  Google Scholar 

  7. H. Furukawa and K. Binder: Phys. Rev. A26, 556 (1982)

    Article  Google Scholar 

  8. R. P. Ten Walde and D. Frenkel: J. Chem. Phys. 109, 9901 (1998)

    Article  Google Scholar 

  9. P. Virnau, M. Müller, L.G. MacDowell, and K. Binder, New J. Phys., preprint cond-mat/0303642

    Google Scholar 

  10. K. Binder, in: Computational Methods in Field Theory. Eds. H. Gausterer and C.B. Lang, (Springer, Berlin, 1992) p. 59.

    Chapter  Google Scholar 

  11. D.P. Landau and K. Binder: A Guide to Monte Carlo Simulation in Statistical Physics (Cambridge Univ. Press, Cambridge, 2000)

    Google Scholar 

  12. K. Binder: Physica A319, 99 (2003)

    Article  MathSciNet  Google Scholar 

  13. M. Biskup, L. Chayes, and R. Kotecky: Europhys. Lett. 60, 21 (2002)

    Article  Google Scholar 

  14. T. Neuhaus and J. Hager: J. Stat. Phys. (in press)

    Google Scholar 

  15. T. Müller and W. Selke: Eur. Phys. J. B10, 549 (1999)

    Google Scholar 

  16. M. Pleimling and W. Selke: J. Phys. A 33, L199 (2000)

    MathSciNet  MATH  Google Scholar 

  17. M. Pleimling and A. Hurler: J. Stat. Phys. 104, 971 (2001)

    Article  MATH  Google Scholar 

  18. B. Berg and T. Neuhaus: Phys. Rev. Lett. 68, 9 (1992)

    Article  Google Scholar 

  19. F. Wang and D. Landau: Phys. Rev. Lett. 86, 2050 (2001)

    Article  Google Scholar 

  20. P. Virnau and M. Müller, in preparation

    Google Scholar 

  21. L.G. MacDowell, P. Virnau, M. Müller, and K. Binder; in preparation

    Google Scholar 

  22. F. H. Stillinger: J. Chem. Phys. 38, 1486 (1963)

    Article  Google Scholar 

  23. B. Widom: J. Chem. Phys. 39, 2808 (1963)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Virnau, P., MacDowell, L.G., Müller, M., Binder, K. (2003). How Do Droplets Depend on the System Size? Droplet Condensation and Nucleation in Small Simulation Cells. In: Krause, E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering ’03. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55876-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55876-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40850-5

  • Online ISBN: 978-3-642-55876-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics