Skip to main content

An Embedding Method for High Frequency Circuits

  • Conference paper
Scientific Computing in Electrical Engineering

Part of the book series: Mathematics in Industry ((MATHINDUSTRY,volume 4))

  • 503 Accesses

Abstract

Widely seperated time scales appear in many electronic circuits, making analysis with the usual numerical methods very difficult and costly. In this article we present a quasilinear system of partial differential equations (PDE) of first order, where the time scales are treated seperately. The PDE corresponds to the system of differential-algebraic equations (DAE) describing the electronic circuit in the sense that the solution of the PDE restricted to one of its characteristics is the solution of the DAE. This embedding method is described in a general setting. Hence it can be used for various applications in circuit simulation.

Since generalized quasiperiodic functions, which are presented here, conceptualize physical properties, they have a basic significance for the embedding method.

Theoretical investigations are presented as well as new approaches for numerical methods based on the connection between the PDE and the DAE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.G. Brachtendorf. Simulation des eingeschwungenen Verhaltens elektronischer Schaltungen. Shaker, Aachen, 1994.

    Google Scholar 

  2. H.G. Brachtendorf. On the relation of certain classes of ordinary differential algebraic equations with partial differential algebraic equations. Technical Report 1131G0-791114-19TM, Bell-Laboratories, 1997.

    Google Scholar 

  3. H.G. Brachtendorf. Theorie und Analyse von autonomen und quasiperiodisch angeregten elektrischen Netzwerken. Habilitationsschrift, Universität Bremen, 2001.

    Google Scholar 

  4. H. G. Brachtendorf and R. Laur. Transient simulation of oscillators. Technical Report 1131GO-980410-09TM, Bell-Laboratories, 1998.

    Google Scholar 

  5. H. G. Brachtendorf, G. Welsch, and R. Laur. A novel time-frequency method for the simulation of the steady state circuits driven by multitone signals. ProcIEEESCS, June 1997.

    Google Scholar 

  6. H. G. Brachtendorf, G. Welsch, R. Laur, and A. Bunse-Gerstner. Numerical steady state analysis of electronic circuits driven by multi-tone signals. Electronic Engineering, 79(2), pp 103–112, April 1996.

    Article  Google Scholar 

  7. W. Kampowski, P. Rentrop, and W. Schmidt. Classification and numerical simulation of electric circuit. Surveys on Mathematics for Industry, 2(1), pp 23–65, 1992.

    MathSciNet  Google Scholar 

  8. O. Narayan and J. Roychowdhury. Multi-time simulation of voltage-controlled oscillators. Proc. Design Automation Conf., pp 629–634, 1999

    Google Scholar 

  9. E. Ngoya and R. Larcheváque. Envelope transient analysis: A new method for the transient and steady state analysis of microwave communications circuit and systems. In Proc. IEEE MTT-S Int. Microwave Symp., pp 1365–1368, Sanfrancisco, 1996.

    Google Scholar 

  10. R. Pulch. Numerische Simulation von PDE-Modellen in der Analyse von RF-Schaltungen, 1999.

    Google Scholar 

  11. R. Pulch. PDE techniques for finding quasi-periodic solutions of oscillators. Preprint 09, IWRMM, Universität Karlsruhe, 2001.

    Google Scholar 

  12. R. Pulch and M. Günther. A method of characteristics for solving multirate partial differential equations in radio frequency application. Preprint 07, IWRMM, Universität Karlsruhe, 2000.

    Google Scholar 

  13. J. Roychowdhury. Efficient methods for simulating highly nonlinear multi-rate circuits. In Proc. IEEE Design Automation Conf., pp 269–274, 1997.

    Google Scholar 

  14. J. Roychowdhury. Analyzing circuits with widely separated time scales using numerical pde methods. IEEE Transactions on Circuits and Systems I — Fundamental Theory and Applications, 48, pp 578–594, May 2001.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Roychowdhury., Multi-time PDEs for dynamical system analysis. In U. van Rienen and M. Guenther and D. Hecht (eds.): Scientific Computing in Electrical Engineering. Lecture Notes in Computational Science and Engineering, Springer, Berlin, pp 3–14, 2001

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lang, B., Bunse-Gerstner, A., Lemanczyk, H., Brachtendorf, H.G., Laur, R. (2004). An Embedding Method for High Frequency Circuits. In: Schilders, W.H.A., ter Maten, E.J.W., Houben, S.H.M.J. (eds) Scientific Computing in Electrical Engineering. Mathematics in Industry, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55872-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55872-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21372-7

  • Online ISBN: 978-3-642-55872-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics