Skip to main content

Coupled Biogeochemical Cycling and Controlling Factors

  • Chapter
Marine Science Frontiers for Europe

Abstract

The changing climate of the planet is closely linked to biogeochemical processes in the oceans with important feedbacks between oceanic, atmospheric and terrestrial components of the earth system. This chapter identifies key processes that mediate the response of marine ecosystems to a changing environment and recommends implementation strategies for future studies. Technological and methodological advances such as the use of new biochemical and molecular techniques have led to the discovery of unknown metabolic pathways and identification of genetic diversity in marine systems. Ecosystem changes, reflected in shifts in dominant plankton groups are likely to have a large global but also regional impact in the European context. In terms of marine biogeochemical cycling, key processes that respond to a changing climate include photosynthesis (and its modulation by trace metal availability and nitrogen fixation), calcification and the production and release of a suite of volatile, climate-reactive gasses. Implementation of future research strategies should focus on the ability to monitor key variables from stationary platforms and ships of opportunity with sufficient stability and accuracy to resolve natural and anthropogenic signals. Large-scale in situ manipulation experiments and mesocosm studies are also recommended as well as the application of molecular and genetic techniques that are a powerful means to investigate physiological and biogeochemical transformations that drive the oceans’s response to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreae MO, Elbert W and DeMora SJ (1995) Biogenic sulfur emissions and aerosols over the Tropical South Atlantic. 3. Atmospheric dimethylsulfide, aerosols and cloud condensation nuclei. J Geophys Res 100(D6):11,335–11,356

    Article  Google Scholar 

  • Antia AN, Koeve W, Fischer G, Blanz T, Schulz-Bull D, Scholten J, Peinert R, Neuer S, Kremling K, Kuss J, Hebbeln D, Bathmann U, Conte M, Fehner U and Zeitzschel B (2001) Basin-wide particulate carbon flux in the Atlantic Ocean: Regional export patterns and potential for atmospheric CO2 sequestration. Glob Biogeochem Cycl 15(4):845–862

    Article  Google Scholar 

  • Ayers G-P, Cainey JM, Gillet RW, Saltzman ES and Hooper M (1987) Sulfur dioxide and dimethlysulfide in marine air at Cape Grim, Tasmania. Tellus 49B:292–299

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U and Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:62–626

    Article  Google Scholar 

  • Buitenhuis E, de Baar HJW and Veldhuis MJW (1999) Regulation of photosynthesis and calcification of Emiliania huxleyi by the different species of dissolved inorganic carbon in seawater. J Phycol 36:64–73

    Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO and Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661

    Article  Google Scholar 

  • Clarke AD, Davis D, Kapustin VN, Eisele F, Chen G, Paluch I, Lenschow D, Bandy AR, Thorton D, Moore K, Maudlin L, Tanner D, Litchy M and Albercook G (1998) Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources. Science 282:89–92

    Article  Google Scholar 

  • Cooper DJ, Watson AJ and Nightingale PD (1996) Large decrease in ocean-surface CO2 fugacity in response to in situ iron fertilisation. Nature 383:511–513

    Article  Google Scholar 

  • Cornell S, Rendell A and Jickells T (1995) Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 376:243–246

    Article  Google Scholar 

  • de Baar HJW and Boyd PM (2000) The Role of Iron in Plankton Ecology and Carbon Dioxide Transfer of the Global Oceans. In: Hanson RB, Ducklow HW and Field JG (eds) The Dynamic Ocean Carbon Cycle: A Midterm Synthesis of the Joint Global Ocean Flux Study. Chapter 4, International Geosphere Biosphere Programme Book Series, Cambridge University Press pp 61–140

    Google Scholar 

  • de Baar HJW and Croot P (2001) Iron resources and oceanic nutrients; advancement of global environment simulation (IRONAGES). Abstract at IGBP Open Science Conference, Amsterdam, July 2001

    Google Scholar 

  • de Baar HJW, La Roche J (2003) Trace Metals in the Ocean: Evolution, Biology and Global Change. In: Wefer G, Lamy F, Mantoura F (eds) Marine Science Frontiers for Europe. Springer, Berlin pp 79–105

    Chapter  Google Scholar 

  • Deuser WG, Jickells TD, King P and Commeau D (1995) Decadal and annual changes in biogenic opal and carbonate fluxes to the deep Sargasso Sea. Deep-Sea Res 42:1923–1932

    Article  Google Scholar 

  • Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E and Theate J-M (1998) Carbon dioxide emission from European estuaries. Science 282:434–436

    Article  Google Scholar 

  • IPCC (2001) Climate Change: The Scientific Basis. Report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • Karner MB, DeLong EF and Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510

    Article  Google Scholar 

  • Kolber ZS, Van Dover CL, Niederman RA and Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179

    Article  Google Scholar 

  • Lancelot C, Hannon E, Becquevort S, Veth C and de Baar HJW (2000) Modeling phytoplankton blooms and related carbon export production in the Southern Ocean: control by light and iron of the Atlantic sector in Austral spring. Deep-Sea Res 47:1621–1662

    Article  Google Scholar 

  • LaRoche J, Boyd PW, McKay RM and Geider R J (1996) Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature 382:802–805

    Article  Google Scholar 

  • Moore JK, Abbott MR, Rihman JG and Nelson DM (2000) The Southern Ocean at the Last Glacial Maximum: A strong sink for atmospheric carbon dioxide. Glob Biogeochem Cycl 14:455–475

    Article  Google Scholar 

  • Nixon SW, Ammerman JW, Atkinson LP, Berounsky VM, Billen G, Boicourt WC, Boynton WR, Church TM, Ditoro DM, Elmgren R, Garber JH, Giblin AE, Jahnke RA, Owens NJP and Pilson M (1996) The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. In: Howarth RW (ed) Nitrogen Cycling in the North Atlantic Ocean and Its Watersheds. Kluwer Academic Publishers, Dordrecht (The Netherlands) pp 41–180

    Google Scholar 

  • Paerl HW and Fogel ML (1994) Isotopic characterization of atmospheric nitrogen inputs as sources of enhanced primary production in coastal Atlantic Ocean waters. Mar Biol 119:635–645

    Article  Google Scholar 

  • Petit JR, Jouzel DJ, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chapellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E and Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica. Nature 399:429–436

    Article  Google Scholar 

  • Ploug H, Stolte W, Epping EHG and Jørgensen BB (1999) Diffusive boundary layers, photosynthesis, and respiration of the colony-forming alga Phaeocystis sp. Limnol Oceanogr 44:1949–1958

    Article  Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE and Morel FFM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  Google Scholar 

  • Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150:189–206

    Article  Google Scholar 

  • Timmermans KR, Gerringa LJA, de Baar HJW, van der Wagt B, Veldhuis MJW, de Jong JTM, Croot PL and Boye M (2001) Growth rates of large and small Southern Ocean diatoms in relation to availability of iron in natural seawater. Limnol Oceanogr 46:260–266

    Article  Google Scholar 

  • Wallace D (2003) Ocean-Atmosphere Exchange and Earth-System Biogeochemistry. In: Wefer G, Lamy F, Mantoura F (eds) Mraine Science Frontiers fpr Europe. Springer, Berlin pp 107–129

    Chapter  Google Scholar 

  • Wassmann P, Olli K, Wexels-Riser C, Svensen C (2003) Ecosystem Function, Biodiversity and Vertical Flux Regulation in the Twilight Zone. In: Wefer G, Lamy F, Mantoura F (eds) Marine Science Frontiers fpr Europe. Springer, Berlin pp 279–287

    Chapter  Google Scholar 

  • Watson AJ, Bakker DCE, Ridgwell AJ, Boyd PW and Law CS (2000) Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407:730–733

    Article  Google Scholar 

  • Watson AJ, Liss P and Duce R (1991) Design of a smallscale in situ iron fertilization experiment. Limnol Oceanogr 36:1960–1965

    Article  Google Scholar 

  • Westbroek P, Brown CW, Van Bleiswijk J, Brownlee K, Brummer GJ, Conte M, Egge J, Fernandez E, Jordan R, Knapperbusch M, Stefels J, Veldhuis M, Van der Wal P and Young J (1994) A model system approach to biological climate forcing — the example of Emiliania huxleyi. Glob Planet Change 8:27–46

    Article  Google Scholar 

  • Wollast R (2003) Biogeochemical Processes in Estuaries. In: Wefer G, Lamy F, Mantoura F (eds) Marine Science Frontiers for Europe. Springer, Berlin pp 61–77

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Antia, A.N. et al. (2003). Coupled Biogeochemical Cycling and Controlling Factors. In: Wefer, G., Lamy, F., Mantoura, F. (eds) Marine Science Frontiers for Europe. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55862-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55862-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40168-1

  • Online ISBN: 978-3-642-55862-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics