Skip to main content

Tropical Pacific Influences on the North Atlantic Thermohaline Circulation

  • Chapter
Marine Science Frontiers for Europe
  • 250 Accesses

Abstract

Most global climate models simulate a weakening of the North Atlantic thermohaline circulation (THC) in response to enhanced greenhouse warming. Both surface warming and freshening in high latitudes, the so-called sinking region, contribute to the weakening of the THC. Some models simulate even a complete breakdown of the THC at sufficiently strong forcing. Here results from a state-of-the-art global climate model are presented that does not simulate a weakening of the THC in response to greenhouse warming. Large-scale air-sea interactions in the tropics, similar to those operating during present-day El Niños, lead to anomalously high salinities in the tropical Atlantic. These are advected into the sinking region, thereby increasing the surface density and compensating the effects of the local warming and freshening. The results of the model study are corroborated by the analysis of observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacher A, Oberhuber JM, Roeckner E (1997) ENSO dynamics and seasonal cycle in the tropical Pacific as simulated by the ECHAM4/OPYC3 coupled general circulation model. Climate Dyn 14:431–450

    Article  Google Scholar 

  • Broecker WS (1991) The great ocean conveyor. Oceanography 4: 79–89

    Google Scholar 

  • Broecker WS, Peteet DM, Rind D (1985) Does the ocean-atmosphere system have more than one stable mode of operation? Nature 315:21–26

    Article  Google Scholar 

  • Christoph M, Barnett TP, Roeckner E (1998) The Antarctic Circumpolar Wave in a Coupled Ocean-Atmosphere GCM. J Climate 11:1659–1672

    Article  Google Scholar 

  • Cubasch U, Hasselmann K, Höck H, Maier-Reimer E, Mikolajewicz U, Santer BD, Sausen R (1992) Timedependent greenhouse warming computations with a coupled ocean-atmosphere model. Climate Dyn 8:55–69

    Article  Google Scholar 

  • Delworth T, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Climate 6:1993–2011

    Article  Google Scholar 

  • IPCC, Climate Change (1992) The Supplementary Report to the IPCC Scientific Assessment. Edited by JT Houghton, BA Callander and SKV Varney. Cambridge University Press 200 pp

    Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1997) Analyses of global sea surface temperature 1856-1991. J Geophys Res 102:27835–27860

    Article  Google Scholar 

  • Lau N-C (1985) Modeling the seasonal dependence of the atmospheric responses to observed El Niños 1962-1976. Mon Wea Rev 113:1970–1996

    Article  Google Scholar 

  • Latif M (2001) Tropical Pacific/Atlantic Ocean Interactions at multi-decadal time scale. Geophys Res Lett 28:539–542

    Article  Google Scholar 

  • Latif M, Roeckner E, Mikolajewicz U, Voss R (2000) Tropical stabilisation of the thermohaline circulation in a greenhouse warming simulation. J Climate 13:1809–1813

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1994) Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. J Climate 7:5–23

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1995) Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378:165–167.

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1999) The role of thermohaline circulation in climate. Tellus 51:91–109

    Google Scholar 

  • Manabe S, Stouffer R, Spelman M, Bryan K (1991) Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J Climate 4:785–818

    Article  Google Scholar 

  • Mikolajewicz U, Voss R (2000) The role of the individual air-sea flux components in CO2-induced changes of the ocean’s circulation and climate. Climate Dyn 16:627–642

    Article  Google Scholar 

  • Mikolajewicz U, Santer BD, Maier-Reimer E (1990) Ocean response to greenhouse warming. Nature 345:589–593.

    Article  Google Scholar 

  • Neelin JD, Dijkstra HA (1995) Ocean-atmosphere interaction and the tropical climatology. Part I: The dangers of flux correction. J Climate 8:1325–1342

    Article  Google Scholar 

  • Oberhuber JM, Roeckner E, Christoph M, Esch M, Latif M (1998) Predicting the ′97 El Niño event with a global climate model. Geophys Res Lett 25:2273–2276

    Article  Google Scholar 

  • Parker DE, Jackson M, Horton EB (1995) The GISST 2.2 sea surface temperature and sea ice climatology. Climate Research Technical Note 63, Hadley Centre, Meteorological Office, Bracknell, UK, 35 pp

    Google Scholar 

  • Philander SGH (1990) El Nino, La Niña, and the Southern Oscillation. Academic Press, San Diego, 293 pp

    Google Scholar 

  • Rahmstorf S (1995) Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378:145–149

    Article  Google Scholar 

  • Rahmstorf S (1997) Risk of sea-change in the Atlantic. Nature 388:825–826

    Article  Google Scholar 

  • Rahmstorf S (1999) Shifting seas in the greenhouse? Nature 399:523–524

    Article  Google Scholar 

  • Roeckner E, Oberhuber JM, Bacher A, Christoph M, Kirchner I (1996) ENSO variability and atmospheric response in a global atmosphere-ocean GCM. Climate Dyn 12:737–754

    Article  Google Scholar 

  • Roeckner E, Bengtsson L, Feichter J, Lelieveld J, Rodhe H (1999) Transient climate change simulations with a coupled atmosphere-ocean GCM including the troposheric sulfur cycle. J Climate 12:3004–3032

    Article  Google Scholar 

  • Ropelewski CF, Halpert M (1987) Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillation. Mon Wea Rev 115:1606–1627

    Article  Google Scholar 

  • Schiller A, Mikolajewicz U, Voss R (1997) The stability of the thermohaline circulation in a coupled ocean-atmosphere model. Climate Dyn 13:325–348

    Article  Google Scholar 

  • Schmittner A, Appenzeller C, Stocker TF (2000) Enhanced Atlantic freshwater export during El Niño. Geophys Res Lett 27:1163–1166

    Article  Google Scholar 

  • Stocker TF, Wright DG (1991) Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature 351:729–732

    Article  Google Scholar 

  • Timmermann A, Latif M, Voss R, Groetzner A (1998) Northern Hemisphere interdecadal variability: A coupled air-sea mode. J Climate 11:1906–1931

    Article  Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697

    Article  Google Scholar 

  • Ulbrich U, Christoph M (1999) A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Climate Dyn 15,7:551–559

    Article  Google Scholar 

  • Wood RA, Keen AB, Mitchell JF, Gregory JM (1999) Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature 399:572–575

    Article  Google Scholar 

  • Zhang X-H, Oberhuber J, Bacher A, Roeckner E (1998) Interpretation of interbasin exchange in an isopycnal ocean model. Climate Dyn 14:725–740

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Latif, M. (2003). Tropical Pacific Influences on the North Atlantic Thermohaline Circulation. In: Wefer, G., Lamy, F., Mantoura, F. (eds) Marine Science Frontiers for Europe. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55862-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55862-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40168-1

  • Online ISBN: 978-3-642-55862-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics