Skip to main content
  • 425 Accesses

Summary

We survey recent results on the inverse kinematic problem arising in geophysics. The question is whether one can determine the sound speed (index of refraction) of a medium by measuring the travel times of the corresponding ray paths. We emphasise the anisotropic case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Chappa, On the range characterization of the kernel of the geodesic X-ray transform, Ph.D thesis, University of Washington, 2002, submitted.

    Google Scholar 

  2. K. C. Creager, Anisotropy of the inner core from differential travel times of the phases PKP and PKIPK, Nature, 356 (1992), 309–314.

    Article  Google Scholar 

  3. C. Croke, Rigidity and the distance between boundary points, J. Diff. Geom., 33 (1991), 445–464.

    MathSciNet  MATH  Google Scholar 

  4. C. Croke, Rigidity for surfaces of non-positive curvature, Comm. Math. Helv., 65 (1990), 150–169.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Croke, N. S. Dairbekov and V. A. Sharafutdinov, Local boundary rigidity of a compact Riemannian manifold with curvature bounded above, Transactions AMS.

    Google Scholar 

  6. M. Gromov, Filling Riemannian manifolds, J. Differential Geometry 18 (1983), 1–147.

    MathSciNet  MATH  Google Scholar 

  7. G. Herglotz (1905). Uber die Elastizitaet der Erde bei Beruecksichtigung ihrer variablen Dichte, Zeitschr. fur Math. Phys., 52 (1905), 275–299.

    MATH  Google Scholar 

  8. S. Hansen and G. Uhlmann, Propagation of polarization in elastodynamics with residual stress and travel times, to appear Math. Annalen.

    Google Scholar 

  9. M. Lassas, V. Sharafutdinov and G. Uhlmann, Semiglobal boundary rigidity for Riemannian manifolds, to appear Math. Annalen.

    Google Scholar 

  10. R. Michel, Sur la rigidité imposée par la longueur des géodésiques, Invent. Math. 65 (1981), 71–83.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. G. Mukhometov, The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry (Russian), Dokl. Akad. Nauk SSSR 232 (1977), no. 1, 32–35.

    MathSciNet  Google Scholar 

  12. R. G. Mukhometov, A problem of reconstructing a Riemannian metric, Siberian Math. J., 22 (1982), 420–433.

    Article  Google Scholar 

  13. R. G. Mukhometov and V. G. Romanov, On the problem of finding an isotropic Riemannian metric in an n-dimensional space (Russian), Dokl. Akad. Nauk SSSR 243 (1978), 41–44.

    MathSciNet  Google Scholar 

  14. J. P. Otal, Sur les longuer des géodésiques d’une métrique a courbure négative dans le disque, Comment. Math. Helv. 65 (1990), 334–347.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Pestov and V. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative curvature, Siberian Math. J., 29 (1988), 114–130.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Sharafutdinov, Integral geometry of tensor fields, VSP, Utrech, the Netherlands (1994).

    Google Scholar 

  17. V. Sharafutdinov, Integral geometry of tensor fields on a manifold whose curvature is bounded above, Siberian Math. J., 33 (1992), 192–204.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Sharafutdinov, Finiteness theorem for the ray transform on a Riemannian manifold, Inverse Problems, 11 (1995), 1039–1050.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Sharafutdinov and G. Uhlmann, On deformation boundary rigidity and spectral rigidity of Riemannian surfaces with no focal points, Journal of Differential Geometry, 56(2000), 93–110.

    MathSciNet  MATH  Google Scholar 

  20. P. Stefanov and G. Uhlmann, Rigidity for metrics with the same lengths of geodesies, Math. Res. Lett. 5 (1998), no. 1–2, 83–96.

    MathSciNet  MATH  Google Scholar 

  21. P. Stefanov and G. Uhlmann, Microlocal approach to boundary rigidity, preprint.

    Google Scholar 

  22. E. Wiechert E and K. Zoeppritz, Uber Erdbebenwellen. Nachr. Koenigl. Geselschaft Wiss, Goettingen, 4, (1907), 415–549.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uhlmann, G. (2003). The Inverse Kinematic Problem in Anisotropic Media. In: Cohen, G.C., Joly, P., Heikkola, E., Neittaanmäki, P. (eds) Mathematical and Numerical Aspects of Wave Propagation WAVES 2003. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55856-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55856-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62480-3

  • Online ISBN: 978-3-642-55856-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics