Skip to main content

Benthic Processes and the Burial of Carbon

  • Chapter
Ocean Biogeochemistry

Abstract

A major goal of the Joint Global Ocean Flux Study (JGOFS) has been to understand the export of carbon from the surface ocean to the deep sea, a process which removes carbon from the active exchange with the atmosphere for long periods of time. Deep-sea sediments are the final sink of organic matter which is not degraded in the water column nor at the water-sediment interface. This interface is a physical boundary collecting and concentrating sinking particulate organic matter from fine debris to dead whales and consequently supports a fairly active benthic community. The level of biotic activity, the rates of remineralization, and last, but not least, the amount of material buried and preserved in the sediment, all depend on the mass flux and the composition of the material reaching the sea floor. As will be shown in this chapter, the connection between the surface ocean and the seafloor is not a simple one. However, the integration of signals at the sea floor allows conclusions to be drawn about upper ocean processes which go beyond the period of direct observation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrantes F (2000) 200000 yr diatom records from Atlantic up-welling sites reveal maximum productivity during LGM and a shift in phytoplankton community structure at 185 000 yr. Earth Planet Sc Lett 176:7–16

    Google Scholar 

  • Alldredge AL, Silver MW (1988) Characteristics, dynamics and significance of marine snow. Prog Oceanogr 20:41–82

    Google Scholar 

  • Altabet MA, Francois R (1994) Sedimentary nitrogen isotope ratio as a recorder for surface ocean nitrate utilization. Global Biogeochem Cy 8:103–116

    Google Scholar 

  • Altabet MA, Francois R (2001) Nitrogen isotope biogeochemistry of the Antarctic Polar Front Zone at 170° W. Deep-Sea Res Pt II 48:4247–4273

    Google Scholar 

  • Andersen FØ, Kristensen E (1992) The importance of benthic macrofauna in decomposition of microalgae in coastal marine sediment. Limnol Oceanogr 37:1392–1403

    Google Scholar 

  • Anderson RF, Rowe GT, Kemp PF, Trumbore S, Biscaye PE (1994) Carbon budget for the mid-slope depocenter of the Middle Atlantic Bight. Deep-Sea Res Pt II 41:669–703

    Google Scholar 

  • Anderson RF, Kumar N, Mortlock RA, Froehch PN, Kubik P, Dittrich-Hannen B, Suter M (1998) Late-Quaternary changes in productivity of the Southern Ocean. J Marine Syst 17:497–514

    Google Scholar 

  • Antia AN, Koeve W, Fischer G, Blanz T, Schulz-Bull D, Scholten J, Neuer S, Kremling K, Kuss J, Hebbeln D, Bathmann U, Fehner U, Zeitzschel B (2001) Basin-wide particulate carbon flux in the Atlantic Ocean: regional export patterns and potential for atmospheric CO2 sequestration. Global Biogeochem Cy 15:845–862

    Google Scholar 

  • Antoine D, Andre J-M, Morel A (1996) Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem Cy 10:57–69

    Google Scholar 

  • Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG (2002) A new, mechanistic model for organic carbon fluxes in the ocean: a quantitative role for the association of POC with ballast minerals. Deep-Sea Res Pt II 49:219–236

    Google Scholar 

  • Bacon MP, Huh CA, Fleer AP, Deuser W (1985) Seasonality in the flux of natural radionuclides and plutonium in the deep Sargasso Sea. Deep-Sea Res 32:273–286

    Google Scholar 

  • Beaufort L, Lancelot Y, Camberlin P, Cayre O, Vincent E, Bassinot F, Labeyrie LD (1997) Insolation cycles as a major control of equatorial Indian Ocean primary productivity. Science 278:1451–1454

    Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20

    Google Scholar 

  • Bender ML, Heggie DT (1984) Fate of organic carbon reaching the sea floor: a status report. Geochim Cosmochim Ac 48:977–986

    Google Scholar 

  • Berelson WM, Anderson RF, Dymond J, Demaster D, Hammond D, Collier ER, Honjo S, Leinen M, McManus J, Pope R, Smith C, Stephens M (1997) Biogenic budgets of particle rain, benthic remineralization and sediment accumulation in the equatorial Pacific. Deep-Sea Res Pt II 44:2251–2282

    Google Scholar 

  • Berger WH, Fischer K, Lai C, Wu G (1987) Ocean carbon flux: global maps of primary production and export production. In: Agegian CR (ed) Biogeochemical cycling and fluxes between the deep euphotic zone and other realms. Research Rep. 88-1, NOAA Undersea Research Programme, Silver Spring, Md., pp 131–176

    Google Scholar 

  • Bett BJ, Malzone MG, Narayanaswamy BE, Wigham BD (2001) Temporal variability in phytodetritus and megabenthic activity at the sea bed in the deep Northeast Atlantic. Prog Oceanogr 50:349–368

    Google Scholar 

  • Betzer PR, Showers WJ, Laws EA, Winn CD, DiTullio GR, Kroopnick PM (1984) Primary productivity and particle fluxes on a transect of the equator at 153° W in the Pacific Ocean. Deep-Sea Res 31:1–11

    Google Scholar 

  • Billett DSM, Lampitt RS, Rice AL, Mantoura RFC (1983) Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302:520–522

    Google Scholar 

  • Billett DSM, Bett BJ, Rice AL, Thurston MH, Galéron L, Sibuet M, Wolff GA (2001) Long-term changes in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic). Prog Oceanogr 50:325–348

    Google Scholar 

  • Biscaye PE, Anderson RF (1994) Fluxes of particulate matter on the slope of the southern Middle Atlantic Bight — Seep-II. Deep-Sea Res Pt II 41:459–509

    Google Scholar 

  • Boetius A, Lochte K (1996) Effect of organic enrichments on hydrolytic potentials and growth of bacteria in deep-sea sediments. Mar Ecol Prog Ser 140:239–250

    Google Scholar 

  • Boetius A, Ferdelman T, Lochte K (2000a) Bacterial activity in sediments of the deep Arabian Sea in relation to vertical flux. Deep-Sea Res Pt II 47:2835–2875

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert C, Rickert D, Widdel F, Gieseke A, Amann R, Joergensen BB, Witte U,Pfannkuche O (2000b) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Google Scholar 

  • Boudreau BP (1997) Diagenetic models and their implementation. Springer-Verlag, Berlin 414 pp

    Google Scholar 

  • Boyd PW, Newton PP (1999) Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces? Deep-Sea Res Pt I 46:63–91

    Google Scholar 

  • Breymann M von, Emeis K-C, Suess E (1992) Water depth and diagenetic constraints on the use of barium as a paleoproductivity indicator. In: UpweUing systems: evolution since the early Miocene. Geological Society Special Publication No. 64, pp 273–284

    Google Scholar 

  • Broecker WS (1982) Glacial to interglacial changes in ocean chemistry. Prog Oceanogr 2:151–197

    Google Scholar 

  • Brumsack HJ (1986) The inorganic geochemistry of cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the Gulf of California. In: Summerhayes CP, Shackleton NJ (eds) North Atlantic Paleoceanography. Geological Society Special Publication, No. 21, pp 447–462

    Google Scholar 

  • Buesseler KO (1991) Do upper-ocean sediment traps provide an accurate record of the particle flux?. Nature 353:420–423

    Google Scholar 

  • Buesseler KO (1998) The decoupling of production and particle export in the surface ocean. Global Biogeochem Cy 12:297–310

    Google Scholar 

  • Buesseler KO, Steinberg DK, Michaels AF, Johnson RJ, Andrews JE, Valdes JR, Price JF (2000) A comparison of the quantity and composition of material caught in a neutrally buoyant versus surface-tehered sediment trap. Deep-Sea Res Pt I 47:277–294

    Google Scholar 

  • Calvert SE, Nielsen B, Fontugne MR (1992) Evidence from nitrogen isotope ratios for enhanced productivity during formation of eastern Mediterranean sapropels. Nature 359:223–225

    Google Scholar 

  • Canfield DE (1994) Factors influencing organic carbon preservation in marine sediments. Chem Geol 114:315–329

    Google Scholar 

  • Charles CD, Fairbanks RG (1990) Glacial to interglacial changes in the isotopic gradients of Southern Ocean surface waters. In: Bleil U, Thiede J (eds) Geological history of the Polar Oceans: Arctic versus Antarctic. Kluwer Academic Publishers, The Netherlands, pp 519–538

    Google Scholar 

  • Charles CD, Froelich PN, Zibello MA, Mortlock RA, Morley JJ (1991) Biogenic opal in Southern Ocean sediments over the last 450000 years: implication for surface water chemistry and circulation. Paleoceanography 6:697–728

    Google Scholar 

  • Charles CD, Wright JD, Fairbanks RG (1993) Thermodynamic influences on the marine carbon-isotope record. Paleoceanography 8:691–697

    Google Scholar 

  • Chase Z (2001) Trace elements as regulators (Fe) and recorders (U, Pa, Th, Be) of biological productiviy in the ocean. Ph.D. Dissertation, Columbia University, New York, 292 pp

    Google Scholar 

  • Chen C-TA, Wang S-L (1999) Carbon, alkalinity and nutrient bud-gets on the East China Sea continetal shelf. J Geophys Res 104:20675–20686

    Google Scholar 

  • Chen C-TA, Liu KK, MacDonald R (2003) Continental margin exchanges. In: Fasham M, Field J, Piatt T, Zeitzschel B. Springer-Verlag, (this volume)

    Google Scholar 

  • Christiansen B, Boetius A (2000) Mass sedimentation of the swimming crab Charybdis smithii (Crustacea: Decapoda) in the deep Arabian Sea. Deep-Sea Res Pt II 47:2687–2706

    Google Scholar 

  • Conte MH, Ralph N, Ross EH (2001) Seasonal and interannual variability in deep-ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda. Deep-Sea Res Pt II 48:1471–1505

    Google Scholar 

  • Curry WB, Crowley TJ (1987) The ∂13C of equatorial Atlantic surface waters: implications for ice age pCO2 levels. Paleoceanography 2:489–517

    Google Scholar 

  • De La Rocha CL, Brzezinski MA, DeNiro MJ, Shemesh A (1998) Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395:680–683

    Google Scholar 

  • Dehairs F, Fagel N, Antia AN, Peinert R, Elskens M, Goeyens L (2000) Export production in the Bay of Biscay as estimated from barium-barite in settling material, a comparison with new production. Deep-Sea Res Pt I 47:583–601

    Google Scholar 

  • Deuser WG (1996) Temporal variability of particle flux in the deep Sargasso Sea. In: Ittekkot V, et al. (ed) Particle flux in the Ocean. John Wilex, New York, pp 185–198

    Google Scholar 

  • Dezileau L, Bareille G, Reyss J-L, Lemoine F (2000) Evidence for strong sediment redistribution by bottom currents along the southeast Indian ridge. Deep-Sea Res Pt I 47:1899–1936

    Google Scholar 

  • Drazen JV, Baldwin RJ, Smith KL Jr. (1998) Sediment community response to a temporarally varying food supply at an abyssal station in the NE Pacific. Deep-Sea Res Pt II 45:893–913

    Google Scholar 

  • Dymond J, Collier R (1996) Particulate Ba fluxes and their relationships to biological productivity. Deep-Sea Res Pt II 43:1283–1308

    Google Scholar 

  • Dymond J, Suess E, Lyle M (1992) Barium in deep-sea sediment: a geochemical proxy for pale op ro duct ivity. Paleoceanography 7:163–181

    Google Scholar 

  • Elderfield H, Rickaby REM (2000) Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean. Nature 405:305–310

    Google Scholar 

  • Emerson S, Fischer K, Reimers C, Heggie D (1985) Organic carbon dynamics and preservation in deep-sea sediments. Deep-Sea Res 32:1–21

    Google Scholar 

  • Emerson S, Stump C, Grootes PM, Stuiver M, Farwell GW, Schmidt FH (1987) Estimates of degradable organic carbon in deep-sea surface sediments from 14C concentrations. Nature 329:51–53

    Google Scholar 

  • Fagel N, Andre L, Dehairs F (1999) Advective excess Ba transport as shown from sediment and trap geochemical signatures. Geochim Cosmochim Ac 63:2353–2367

    Google Scholar 

  • Fairbanks RG, Wiebe PH, Be AWH (1980) Vertical-distribution and isotopic composition of living planktonic-foraminifera in the Western North-Atlantic. Science 207:61–63

    Google Scholar 

  • Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275

    Google Scholar 

  • Ferdelman T, Fossing H, Neumann K, Schulz HD (1999) Sulfate reduction in surface sediments of the South-East Atlantic continental margin between 15°38′S and 27°57′S (Angola and Namibia). Limnol Oceanogr 44:650–661

    Google Scholar 

  • Fischer G, Ratmeyer V, Wefer G (2000) Organic carbon fluxes in the Atlantic and the Southern Ocean: relationship to primary production compiled from satellite radiometer data. Deep-Sea Res Pt II 47:1961–1997

    Google Scholar 

  • Flach E, Lavaleye M, de Stigter H, Thomsen L (2001) Feeding types of the benthic community and particle transport across the slope of the N.W. European continental margin (Goban Spur). Prog Oceanogr 42:209–231

    Google Scholar 

  • Francois R, Altabet MA (1992) Glacial to interglacial changes in surface nitrate utilization in the Indian sector of the Southern Ocean as recorded by ∂15N. Paleoceanography 7:589–606

    Google Scholar 

  • Francois R, Bacon MP, Suman DO (1990) Th-230 profiling in deep-sea sediments: high-resolution records of flux and dissolution of carbonate in the equatorial Atlantic during the last 24000 years. Paleoceanography 5:761–787

    Google Scholar 

  • Francois R, Bacon MP, Altabet MA, Labeyrie LD (1993) Glacial/interglacial changes in sediment rain rate in the S.W. Indian sector of subantarctic waters as recorded by 230Th, 231Pa, U and δ15N. Paleoceanography 8:611–629

    Google Scholar 

  • Francois R, Honjo S, Manganini SJ, Ravizza GE (1995) Biogenic barium fluxes to the deep sea: Implications for paleoproductivity reconstruction. Global Biogeochem Cy 9:289–303

    Google Scholar 

  • Francois R, Altabet MA, Yu E-F, Sigman D, Bacon MP, Frank M, Bohrmann G, Bareille G, Labeyrie LD (1997) Contribution of southern ocean surface water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389:929–935

    Google Scholar 

  • Frank M, Gersonde R, Mangini A (1999) Sediment redistribution, 230Th ex-normalization and implications for reconstruction of particle flux and export productivity. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples from the South Atlantic. Springer-Verlag, New York, pp 409–426

    Google Scholar 

  • Ganeshram RS, Pedersen TF, Calvert SE, McNeill GW, Fontugne MR (2000) Glacial-interglacial variability in denitrification in the world’s oceans: causes and consequences. Paleoceanography 15:361–376

    Google Scholar 

  • Glud RN, Gundersen JK, Jorgensen BB, Revsbech NP, Schulz HD (1994) Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic ocean: in situ and laboratory measurements. Deep-Sea Res Pt I 41:1767–1788

    Google Scholar 

  • Goldman JC (1993) Potential role of large oceanic diatoms in new primary production. Deep-Sea Res Pt I 40:159–168

    Google Scholar 

  • Gooday AJ, Turley CM (1990) Responses by benthic organisms to inputs of organic matter to the ocean floor: a review. Philos Tr R Soc S-A 331:119–138

    Google Scholar 

  • Grandel S (2000) Untersuchungen zum regionalen Verteilungsmuster benthischer Stoffflüsse unter Berücksichtigung biogeographischer Provinzen im Arabischen Meer und im Atlantik. Ph.D. Dissertation, Christian-Albrechts-University, Kiel, 170 pp

    Google Scholar 

  • Gust G, Michaels AF, Johnson R, Deuser WG, Bowles W (1994) Mooring line motions and sediment trap hydromechanics: in situ intercomparison of three common deployment designs. Deep-Sea Res Pt I 41:831–857

    Google Scholar 

  • Haake B, Ittekkot V, Rixen T, Ramaswamy V, Nair RR, Curry WB (1993) Seasonality and interannual variability of particle fluxes to the deep Arabian Sea. Deep-Sea Res Pt I 40:1323–1344

    Google Scholar 

  • Hartnett HE, Keil RG, Hedges JI, Devol AH (1998) Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391:572–574

    Google Scholar 

  • Hedges JI, Hu FS, Devol AH, Hartnett HE, Tsamakis E, Keil RG (1999) Sedimentary organic matter preservation: a test for selective degradation under oxic conditions. Am J Sci 299:529–555

    Google Scholar 

  • Help CHR, Duineveld G, Flach E, Graf G, Helder W, Herman PMJ, Lavaleye M, Middelburg JJ, Pfannkuche O, Soetaert K, Soltwedel T, de Stigter H, Thomsen L, Vanaverbeke J, de Wilde P (2001) The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic). Deep-Sea Res Pt II 48:3223–3243

    Google Scholar 

  • Hensen C, Zabel M, Schulz HD (2000) A comparison of benthic nutrient fluxes from deep-sea sediments off Namibia and Argentina. Deep-Sea Res Pt II 47:2029–2050

    Google Scholar 

  • Herguera JC, Berger WH (1991) Paleoproductivity from benthic foraminifera abundance: glacial to postglacial change in the West-Equatorial Pacific. Geology 19:1173–1176

    Google Scholar 

  • Herguera JC, Berger WH (1994) Glacial to postglacial drop in productivity in the western Equatorial Pacific: Mixing rate vs. nutrient concentrations. Geology 22:629–632

    Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Google Scholar 

  • Hollister CD, McCave IN (1984) Sedimentation under deep-sea storms. Nature 309:220–225

    Google Scholar 

  • Honjo S, Francois R, Manganini S, Dymond J, Collier R (2000) Particle fluxes to the interior of the Southern Ocean in the Western Pacific sector along 170° W. Deep-Sea Res Pt II 47:3521–3548

    Google Scholar 

  • Ittekkot V (1993) The abiotically driven biological pump in the ocean and short-term fluctuations in atmospheric CO2 contents. Global Planet Change 8:17–25

    Google Scholar 

  • Jahnke RA (1990) Early diagenesis and recycling of biogenic debris at the sea floor, Santa Monica Basin, California. J Mar Res 48:413–436

    Google Scholar 

  • Jahnke RA (1996) The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Global Biogeochem Cy 10:71–88

    Google Scholar 

  • Jahnke RA, Reimers CE, Craven DB (1990) Intensification of recycling of organic matter at the sea floor near ocean margins. Nature 348:50–54

    Google Scholar 

  • Kähler P, Bauerfeind E (2001) Organic particles in a shallow sediment trap: substantial loss to the dissolved phase. Limnol Oceanogr 46:719–723

    Google Scholar 

  • Keigwin LD, Boyle EA (1989) Late Quaternary paleochemistry of high-latitude surface waters. Palaeogeogr Palaeocl 73:85–106

    Google Scholar 

  • Keil RG, Montluçon DB, Prahl FG, Hedges JI (1994) Sorptive preservation of labile organic matter in marine sediments. Nature 370:549–552

    Google Scholar 

  • Keil RG, Tsamakis E, Devol A (1999) Amino acid composition and OC:SA ratios indicate enhanced preservation of organic matter in Pacific Mexican margins ediments. In: Transactions of the American Geophysical Union, pp OS189. Ocean Sciences Meeting Supplement

    Google Scholar 

  • Kennett JP, Cannariato KG, Hendy LL, Behl RJ (2000) Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288:128–133

    Google Scholar 

  • Kohfeld KE, Anderson RF, Lynch-Stieglitz J (2000) Carbon isotopic disequilibrium in polar planktonic foraminifera and its impact on modern and Last Glacial Maximum reconstructions. Paleoceanography 15:53–64

    Google Scholar 

  • Kristensen E, Andersen F0, Blackburn TH (1992) Effects of benthic macrofauna and temperature on degradation of macroalgal detritus: the fate of organic carbon. Limnol Oceanogr 37:1404–1419

    Google Scholar 

  • Kumar N (1994) Trace metals and natural radionuclides as tracers of ocean productivity. Ph.D. Dissertation, Columbia University, New York, 317 pp

    Google Scholar 

  • Kumar N, Anderson RF, Mortlock RA, Froelich PN, Kubik PW, Dittrich-Hannen B, Suter M (1995) Iron fertilization of glacialage Southern Ocean productivity. Nature 378:675–680

    Google Scholar 

  • Kumar N, Anderson RF, Biscaye PE (1996) Remineralization of particulate authigenic trace metals in the Middle Atlantic Bight: implications for proxies of export production. Geochim Cosmochim Ac 60:3383–3397

    Google Scholar 

  • Labeyrie LD, Duplessy JC (1985) Changes in the oceanic 13C/12C ratio during the last 140000 years — high-latitude surface-water records. Palaeogeogr Palaeocl 50:217–240

    Google Scholar 

  • Lampitt RS, Antia A (1997) Particle flux in deep seas: regional characteristics and temporal variability. Deep-Sea Res Pt I 44:1377–1403

    Google Scholar 

  • Lee C (1992) Controls on organic carbon preservation: the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim Cosmochim Ac 56:3323–3335

    Google Scholar 

  • Lochte K (1992) Bacterial standing stock and consumption of organic carbon in the benthic boundary layer of the abyssal North Atlantic. In: Rowe GT, Pariente V (eds) Deep-sea food chains and the global carbon cycle. Kluwer Academic Publishers, Netherland, pp 1–10

    Google Scholar 

  • Lochte K, Pfannkuche O (2002) Processes driven by the small sized organisms at the water-sediment interface. In: Hebbeln D, Wefer G (eds) Ocean margin systems. Springer-Verlag, Heidelberg

    Google Scholar 

  • Lochte K, Turley CM (1988) Bacteria and cyanobacteria associated with phytodetritus in the deep sea. Nature 333:67–69

    Google Scholar 

  • Lochte K, Ducklow H, Fasham MJR, Stienen C (1993) Plankton succession and carbon cycling at 47° N 20° W during the JGOFS North Atlantic Bloom Experiment. Deep-Sea Res Pt II 40:91–114

    Google Scholar 

  • Louanchi F, Najjar RG (2000) A global monthly climatology of phosphate, nitrate, and silicate in the upper ocean: spring-summer export production and shallow remineralization. Global Biogeochem Cy 14:957–977

    Google Scholar 

  • Loubere P, Fariduddin M (1999) Quantitative estimation of global patterns of surface ocean biological productivity and its seasonal variation on time scales from centuries to millennia. Global Biogeochem Cy 13:115–133

    Google Scholar 

  • Luff R, Wallmann K, Grandel S, Schlüter M (2000) Numerical modelling of benthic processes in the deep Arabian Sea. Deep-Sea Res Pt II 47:3039–3072

    Google Scholar 

  • Lyle M, Zahn R, Prahl FG, Dymond J, Colher R, Pisias NG, Suess E (1992) Paleoproductivity and carbon burial across the California Current: the MULTITRACERS transect, 42° N. Paleoceanography 7:251–272

    Google Scholar 

  • Madin LP (1982) Production, composition and sedimentation of salp fecal pellets in oceanic waters. Mar Biol 67:39–45

    Google Scholar 

  • Marcantonio F, Anderson RF, Stute M, Kumar N, Schlosser P, Mix A (1996) Extraterrestrial 3He as a tracer of marine sediment transport and accumulation. Nature 383:705–707

    Google Scholar 

  • Marcantonio F, Anderson RF, Higgins S, Stute M, Schlosser P, Kubik P (2001) Sediment focusing in the central equatorial Pacific Ocean. Paleoceanography 16:260–267

    Google Scholar 

  • Marchai O, Francois R, Stocker TF, Joos F (2000) Ocean thermo-haline circulation and sedimentary 231Pa/230Th ratio. Paleoceanography 15:625–641

    Google Scholar 

  • Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13

    Google Scholar 

  • Martin JH, Knauer GA, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res 34:267–285

    Google Scholar 

  • Martin WR, Bender ML (1988) The variability of benthic fluxes and sedimentary reminerlization in response to seasonally variable organic carbon rain rates in the deep-sea: a modeling study. Am J Sci 288:561–574

    Google Scholar 

  • Mayer LM (1994) Surface area control of organic carbon accumulation in continental shelf sediments. Geochim Cosmochim Ac 58:1271–1284

    Google Scholar 

  • McCave IN, Hall IR, Antia AN, Chou L, Dehairs F, Lampitt RS, Thomsen L, van Weering TC, Wollast R (2001) Distribution, composition and flux of particulate material over the European margin at 47°50′N. Deep-Sea Res Pt II 48:3107–3139

    Google Scholar 

  • McCorkle DC, Keigwin L, Corliss BH, Emerson SR (1990) The influence of microhabitats on the carbon isotopic composition of deep sea benthic foraminifera. Paleoceanography 5:161–185

    Google Scholar 

  • McCorkle D, Veeh HH, Heggie DT (1994) Glacial-holocene paleopro-ductivity off western Australia: a comparison of proxy records. In: Zahn R, Kaminski M, Pedersen TF (eds) Carbon cycling in the glacial ocean: constraints of the ocean’s role in global change. NATO ASI Series, vol. 117. Springer-Verlag, Berlin, pp 443–479

    Google Scholar 

  • McCorkle DC, Martin PA, Lea DW, Klinkhammer GP (1995) Evidence of a dissolution effect on benthic foraminiferal shell chemistry — ∂13C, Cd/Ca, Ba/Ca, and Sr/Ca: results from the Ontong Java Plateau. Paleoceanography 10:699–714

    Google Scholar 

  • McIntyre A, Molfino B (1996) Forcing of Atlantic equatorial and subpolar millennial cycles by precession. Science 274:1867–1870

    Google Scholar 

  • McManus J, Berelson WM, Klinkhammer GP, Johnson KS, Coale KH, Anderson RF, Kumar N, Burdige DJ, Hammond DE, Brumsack HJ, McCorkle DC, Rushdi A (1998) Geochemistry of barium in marine sediments: implications for its use as a paleoproxy. Geochim Cosmochim Ac 62:3453–3473

    Google Scholar 

  • McManus J, Berelson WM, Hammond DE, Klinkhammer GP (1999) Barium cycling in the North Pacific: implications for the utility of Ba as a paleoproductivity and paleoalkalinity proxy. Paleoceanography 14:53–61

    Google Scholar 

  • Menard HW, Smith SM (1966) Hypsometry of ocean basin provinces. J Geophys Res 71:4305–4325

    Google Scholar 

  • Mix AC (1989a) Influence of productivity variations on long-term atmospheric CO2. Nature 337:541–544

    Google Scholar 

  • Mix AC (1989b) Pleistocene paleoproductivity: evidence from organic carbon and foraminiferal species. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past. Wiley Interscience, Chichester, pp 313–340

    Google Scholar 

  • Molfino B, Mclntyre A (1990) Precessional forcing of nutricline dynamics in the Equatorial Atlantic. Science 249:766–769

    Google Scholar 

  • Mortlock RA, Charles CD, Froelich PN, Zibello MA, Saltzman J, Hays JD, Burckle LH (1991) Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351:220–223

    Google Scholar 

  • Mueller PJ, Suess E (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans — I. Organic C on preservation. Deep-Sea Res 26A:1347–1362

    Google Scholar 

  • Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Queguiner B (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data, and relationship to biogenic sedimentation. Global Biogeochem Cy 9:359–372

    Google Scholar 

  • Nelson DM, Anderson RF, Barber RT, Brzezinski MA, Buesseler KO, Chase Z, Collier RW, Dickson M-L, François R, Hiscock MR, Honjo S, Marra J, Martin WR, Sambrotto RN, Sayles FL, Sigmon DE (2002) Vertical budgets for organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996–1998. Deep-Sea Res Pt II 49:1645–1674

    Google Scholar 

  • Newton PP, Lampitt RS, Jickells TD, King P, Boutle C (1994) Temporal and spatial variability of biogenic particle fluxes during the JGOFS northeast Atlantic process studies at 47° N, 20° W (1989–1990). Deep-Sea Res Pt II 41:1617–1642

    Google Scholar 

  • Ninnemann US, Charles CD (1997) Regional differences in Quaternary Subantarctic nutrient cycling: link to intermediate and deep water ventilation. Paleoceanography 12:560–567

    Google Scholar 

  • Noji TT, Bathmann UV, von Bodungen B, Voss M, Antia A, Krumbholz M, Klein B, Peeken I, Noji CI-M, Rey F (1997) Clearance of picoplankton-sized particles and formation of rapidly sinking aggregates by the pteropod Limacina retroversa. J Plankton Res 19:863–875

    Google Scholar 

  • Pace ML, Knauer GA, Karl DM, Martin JH (1987) Primary production, new production and vertical flux in the Eastern Pacific. Nature 325:803–804

    Google Scholar 

  • Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28

    Google Scholar 

  • Paytan A (1995) Marine barite, a recorder of oceanic chemistry, productivity, and circulation. Ph.D. Dissertation, University of California, San Diego, 111 p

    Google Scholar 

  • Paytan A, Kastner M, Chavez FP (1996) Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science 274:1355–1357

    Google Scholar 

  • Pedersen TF, Bertrand P (2000) Influences of oceanic rheostats and amplifiers on atmospheric CO2 content during the Late Quaternary. Quat Sci Reviews 19:273–283

    Google Scholar 

  • Peinert R, Bauerfeind E, Gradinger R, Haupt O, Krumbholz M, Peeken I, Ramseier RO, Werner I, Zeitzschel B (2001) Biogenic particle sources and vertical flux patterns in the seasonally icecovered Greenland Sea. In: Schäfer P, Ritzrau W, Schlüter M, Thiede J (eds) The Northern North Atlantic. Springer-Verlag, Berlin Heidelberg, pp 69–79

    Google Scholar 

  • Pfannkuche O (1993) Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47° N, 20° W. Deep-Sea Res Pt I 40:135–149

    Google Scholar 

  • Pfannkuche O, Lochte K (1993) Open ocean pelago-benthic coupling: cyanobacteria as tracers of sedimenting salp faeces. Deep-Sea Res Pt I 40:727–737

    Google Scholar 

  • Pfannkuche O, Lochte K (2000) The biogeochemistry of the deep Arabian Sea: overview. Deep-Sea Res Pt II 47:2615–2628

    Google Scholar 

  • Pfannkuche O, Boetius A, Lochte K, Lundgreen U, Thiel H (1999) Responses of deep-sea benthos to sedimentation patterns in the North-East Atlantic in 1992. Deep-Sea Res Pt I 46:573–596

    Google Scholar 

  • Pichon JJ, Bareille G, Labracherie M, Labeyrie LD, Baudrimont A, Turon JL (1992) Quantification of the biogenic silica dissolution in Southern-Ocean sediments. Quaternary Res 37:361–378

    Google Scholar 

  • Pondaven P, Ragueneau O, Tréguer P, Hauvesre A, Dezileau L, Reyss JL (2000) Resolving the ‘opal paradox’ in the Southern Ocean. Nature 405:168–172

    Google Scholar 

  • Pope RH, Demaster DJ, Smith CR, Seitmann H (1996) Rapid bioturbation in equatorial Pacific sediments: evidence from excess 234Th measurements. Deep-Sea Res Pt II 43:1339–1364

    Google Scholar 

  • Rabouille C, Gaillard J-F (1991) Towards the EDGE: early diagenetic global explanation: a model depicting the the early diagenesis of organic matter, O2, NO3, Mn, and PO4. Geochim Cosmochim Ac 55:2511–2525

    Google Scholar 

  • Ragueneau O, Tréguer P, Leynaert A, Anderson RF, Brzezinski MA, DeMaster DJ, Dugdale RC, Dymond J, Fischer G, François R, Heinze C, Maier-Reimer E, Martin-Jézéquel V, Nelson DM, Quéguiner B (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet Change 26:317–365

    Google Scholar 

  • Rice AL, Billet DSM, Fry J, John AWG, Lampitt RS, Mantoura RFC, Morris RJ (1986) Seasonal deposition of phytodetritus to the deep-sea floor. P Roy Soc Edinb B 88:265–279

    Google Scholar 

  • Rickaby REM, Elderfield H (1999) Planktonic foraminiferal Cd/Ca: paleonutrients or paleotemperature?. Paleoceanography 14: 293–303

    Google Scholar 

  • Ritzrau W (1996) Microbial activity in the benthic boundary layer (BBL): small scale distribution and its relationship to the hydrodynamic regime. J Sea Res 36:171–180

    Google Scholar 

  • Ritzrau W, Graf G, Schlüter M (2001a) Exchange processes across the sediment water interface. In: Schäfer P, Ritzrau W, Schlüter M, Thiede J (eds) The Northern North Atlantic. Springer-Verlag, Berlin Heidelberg, pp 199–206

    Google Scholar 

  • Ritzrau W, Graf G, Scheltz A, Queisser W (2001b) Bentho-pelagic coupling and carbon dynamics in the northern North Atlantic. In: Schäfer P, Ritzrau W, Schlüter M, Thiede J (eds) The Northern North Atlantic. Springer-Verlag, Berlin Heidelberg, pp 207–224

    Google Scholar 

  • Romankevich EA, Vetrov AA, Korneeva GA (1999) Geochemistry of organic carbon in the ocean. In: Gray JS, Ambrose W Jr., Szaniawska A (eds) Biogeochemical cycling and sediment ecology. NATO ASI Series, Kluwer Academic Publishers, Dordrecht Boston London, p 1–27

    Google Scholar 

  • Rosenthal Y, Boyle EA, Labeyrie L (1997) Last glacial maximum paleochemistry and deepwater circulation in the Southern Ocean: evidence from foraminiferal cadmium. Paleoceanography 12:787–796

    Google Scholar 

  • Sancetta C (1992) Primary production in the glacial North Atlantic and North Pacific Oceans. Nature 360:249–251

    Google Scholar 

  • Sarmiento JL, Toggweiler JR (1984) A new model for the role of the oceans in determining atmospheric pCO2. Nature 308:621–624

    Google Scholar 

  • Sauter EJ, Schlüter M, Suess E (2001) Organic carbon flux and reminerlization in surface sediments from the northern North Atlantic derived from pore-water oxygen microprofiles. Deep-Sea Res Pt I 48:529–553

    Google Scholar 

  • Sayles FL, Martin WR, Deuser WD (1994) Response of benthic oxygen demand to particulate organic carbon supply in the deep-sea near Bermuda. Nature 371:686–689

    Google Scholar 

  • Sayles FL, Martin WR, Chase Z, Anderson RF (2001) Benthic remineralization and burial of biogenic SiO2, CaCO3, organic carbon and detrital material in the Southern Ocean along a transect at 170° W. Deep-Sea Res Pt II 48:4323–4383

    Google Scholar 

  • Schlitzer R (2002) Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite based estimates. Deep-Sea Res Pt II 49:1623–1644

    Google Scholar 

  • Schlüter M, Sauter EJ (2000) Spatial budget of organic carbon flux to the seafloor of the northern North Atlantic (60°N-80°N). Global Biogeochem Cy 14:329–340

    Google Scholar 

  • Schlüter M, Sauter E, Schulz-Bull D, Balzer W, Suess E (2001) Fluxes of organic carbon and biogenic silica reaching the seafloor: a comparison of high northern and southern latitudes of the Atlantic Ocean. In: Schäfer P, Ritzrau W, Schlüter M, Thiede J (eds) The Northern North Atlantic. Springer-Verlag, Berlin Heidelberg, pp 225–240

    Google Scholar 

  • Schölten JC, Fietzke J, Vogler S, van der Loeff MM Rutgers, Mangini A, Koeve W, Waniek J, Stoffers P, Antia A, Kuss J (2001) Trapping efficiencies of sediment traps from the deep eastern North Atlantic: the 230Th calibration. Deep-Sea Res Pt II 48:2383–2408

    Google Scholar 

  • Schubert CJ, Villaneuva J, Calvert SE, Cowie GL, von Rad U, Schulz H, Berner U, Erlenkeuser H (1998) Stable phytoplankton community structure in the Arabian Sea over the past 200000 years. Nature 394:563–566

    Google Scholar 

  • Shemesh A, Burckle LH, Froelich PN (1989) Dissolution and preservation of antarctic diatoms and the effect on sediment thanatocoenoses. Quaternary Res 31:288–308

    Google Scholar 

  • Shimmield GB, Jahnke RA (1995) Particle flux and its conversion to the sediment record: open ocean upwelling systems. In: Summerhayes CP, Emeis K-C, Angel MV, Smith RL, Zeitzschel B (eds) Upwelling in the ocean: modern processes and ancient records. John Wiley & Sons, New York, pp 171–192

    Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res Pt II 45:517–567

    Google Scholar 

  • Sigman DM, Altabet MA, Francois R, McCorkle DC, Gaillard JF (1999) The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography 14:118–134

    Google Scholar 

  • Smith CR, Berelson W, Demaster DJ, Dobbs FC, Hammond D, Hoover DJ, Pope RH, Stephen M (1997) Latitudinal variations in benthic processes in the abyssal equatorial Pacific: control by biogenic particle flux. Deep-Sea Res Pt II 44:2295–2317

    Google Scholar 

  • Smith KL Jr. (1987) Food energy supply and demand: a discrepancy between particulate organic carbon flux and sediment community oxygen consumption in the deep ocean. Limnol Oceanogr 32:201–220

    Google Scholar 

  • Smith KL Jr., Kaufmann RS (1999) Long-term discrepancy between food supply and demand in the deep eastern North Pacific. Science 284:1174–1177

    Google Scholar 

  • Smith KL Jr., Kaufmann RS, Baldwin RJ, Carlucci AF (2001) Pelagic-benthic coupling in the abyssal eastern North Pacific: an 8-year time-series study of food supply and demand. Limnol Oceanogr 46:543–556

    Google Scholar 

  • Soetaert K, Herman PMJ, Middelburg JJ (1996) Dynamic response of deep sea sediments to seasonal variations: a model. Limnol Oceanogr 41:1651–1668

    Google Scholar 

  • Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500

    Google Scholar 

  • Suess E (1980) Particulate organic carbon flux in the oceans — sur-face productivity and oxygen utilisation. Nature 288:260–263

    Google Scholar 

  • Suman DO, Bacon MP (1989) Variations in holocene sedimentation in the North American basin determined from 230Th measurements. Deep-Sea Res 36:869–878

    Google Scholar 

  • Tengberg A, de Bovee F, Hall P, Berelson W, Cicceri G, Crassous P, Devol A, Emerson S, Glud R, Graziottin F, Gundersen J, Hammond D, Helder W, Jahnke R, Khripounoff A, Nuppenau V, Pfannkuche O, Reimers C, Rowe G, Sahami A, Sayles F, Schuster M, Wehrli B, de Wilde P (1995) Benthic chamber and profile landers in oceanography — a review of design, technical solutions and functioning. Prog Oceanogr 35:253-294

    Google Scholar 

  • Thiel H, Pfannkuche O, Schriever G, Lochte K, Gooday AJ, Hemleben C, Mantoura RFC, Turley CM, Patching JW, Riemann F (1989) Phytodetritus on the deep-sea floor in a central oceanic region of the Northeast Atlantic. Biol Oceanogr 6:203–239

    Google Scholar 

  • Thomas E, Booth L, Maslin M, Shackleton NJ (1995) Northeastern Atlantic benthic foraminifera during the last 45000 years: Changes in productivity seen from the bottom up. Paleoceanography 10:545–562

    Google Scholar 

  • Tréguer P, Legendre L, Rivkin RT, Ragueneau O, Dittert N (2003) Water column biogeochemistry below the euphotic zone. In: Fasham M (ed) Ocean biogeochemistry. Springer-Verlag, Heidelberg, (this volume)

    Google Scholar 

  • Tréguer P, Nelson DM, Vanbennekom AJ, Demaster DJ, Leynaert A, Queguiner B (1995) The silica balance in the world ocean — a reestimate. Science 268:375–379

    Google Scholar 

  • Tseitlin VB (1993) The relationship between primary production and vertical organic carbon flux in the ocean mesopelagial. Okeanologya 33:224–228

    Google Scholar 

  • Turley CM, Lochte K (1990) Microbial response to the input of fresh detritus to the deep-sea bed. Palaeogeogr Palaeocl 89:3–23

    Google Scholar 

  • Turley CM, Lochte K, Lampitt RS (1995) Transformations of biogenic particles during sedimentation in the northeastern Atlantic. Philos T Roy Soc B 348:179–189

    Google Scholar 

  • Turnewitsch R, Witte U, Graf G (2000) Bioturbation in the abyssal Arabian Sea: influence of fauna and food supply. Deep-Sea Res Pt II 47:2877–2911

    Google Scholar 

  • Villaneuva J, Grimait JO, Cortijo E, Vidal L, Labeyrie LD (1997) A biomarker approach to the organic matter deposited in the North Atlantic during the last climatic cycle. Geochim Cosmochim Ac 61:4633–4646

    Google Scholar 

  • Vinogradov ME, Shushkina EA, Kopelevitch OV, Sheberstov SV (1996) Photosynthetic primary production in the ocean, based on expedition’s and satellite data. Okeanologiya+ 36:566–575

    Google Scholar 

  • Walter H-J, van der Loeff MMR, Hoeltzen H (1997) Enhanced scavenging of 231Pa relative to 230Th in the south Atlantic south of the polar front: implications for the use of the 231Pa/230Th ratio as a paleoproductivity proxy. Earth Planet Sc Lett 149:85–100

    Google Scholar 

  • Watkins JM, Mix AC (1998) Testing the effects of tropical temperature, productivity, and mixed-layer depth on foraminiferal transfer functions. Paleoceanography 13:96–105

    Google Scholar 

  • Witte U, Pfannkuche O (2000) High rates of benthic carbon remineralisation in the abyssal Arabian Sea. Deep-Sea Res Pt II 47:2785–2804

    Google Scholar 

  • Wollast R, Chou L (2001) The carbon cycle at the ocean margin in the Northern Gulf of Biscay. Deep-Sea Res Pt II 48:3265–3293

    Google Scholar 

  • Woodruff F, Savin SM (1985) ∂13C values of Miocene Pacific benthic foraminifera: correlations with sea level and biological productivity. Geology 212:119–122

    Google Scholar 

  • Yu E-F, Francois R, Bacon MP (1996) Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379:689–694

    Google Scholar 

  • Yu E-F, Francois R, Bacon MP, Honjo S, Fleer AP, Manganini SJ, van der Loeff MM Rutgers, Ittekkot V (2001a) Trapping efficiency of bottom-tethered sediment traps estimated from the intercepted fluxes of 230Th and 231Pa. Deep-Sea Res Pt I 48:865–889

    Google Scholar 

  • Yu E-F, Francois R, Bacon MP, Fleer AP (2001b) Fluxes of 230Th and 231Pa to the deep sea: Implications for the interpretation of excess 230Th and 231Pa/230Th profiles in sediments. Earth Planetetary Science Letters 191: 219–230.

    Google Scholar 

  • Zahn R, Winn K, Sarnthein M (1986) Benthic foraminiferal ∂13C and accumulation rates of organic carbon: Uvigeina peregrina group and Cibicidoides wuellerstorfi. Paleoceanography 1:27–42

    Google Scholar 

  • Zatsepina OY, Buffett BA (1998) Thermodynamic conditions for the stability of gas hydrates in the seafloor. J Geophys Res B 103:24127–24139

    Google Scholar 

  • Zheng Y, Anderson RF, van Geen A, Fleisher MQ (2002a) Preservation of particulate non-lithogenic uranium in marine sediments. Geochim Cosmochim Ac 66:3085–3092

    Google Scholar 

  • Zheng Y, Anderson RF, van Geen A, Fleisher MQ (2002b) Remobilization of authigenic uranium in marine sediments by bioturbation. Geochim Cosmochim Ac 66:1759–1772

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lochte, K., Anderson, R., Francois, R., Jahnke, R.A., Shimmield, G., Vetrov, A. (2003). Benthic Processes and the Burial of Carbon. In: Fasham, M.J.R. (eds) Ocean Biogeochemistry. Global Change — The IGBP Series (closed). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55844-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55844-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62691-3

  • Online ISBN: 978-3-642-55844-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics