Skip to main content

The Impact of Climate Change and Feedback Processes on the Ocean Carbon Cycle

  • Chapter
Ocean Biogeochemistry

Part of the book series: Global Change — The IGBP Series (closed) ((GLOBALCHANGE))

Abstract

We have been aware of the concept of global climate change since the advent of modern science in the 17th Century and the emergence of disciplines such as geology. However, it is only in the last century that a putative link, termed the ‘the Greenhouse Effect’ (Wood 1909), has been suggested between the atmospheric concentrations of particular gases and climate. The composition of the atmosphere has been studied routinely since the late fifties/early sixties with the establishment of monitoring sites for atmospheric CO2 (such as Mauna Loa) where the 40-year dataset clearly demonstrates the rise of atmospheric CO2 (Keeling et al. 1995). Similar anthropogenically-mediated increases in the atmos-pheric concentrations of other gases such as nitrous oxide and methane have also been recorded in the last 40 years (Bigg 1996; IPCC 2001). Such increases in the concentrations of these gases in the atmosphere alter the radiative forcing globally by decreasing the long-wave radiative flux leaving the trophosphere (Houghton et al. 1990) which is thought to lead to climatic effects. Alongside the global monitoring of atmospheric concentrations and distributions of greenhouse gases, there have been concerted efforts to use mathematical models to better understand the nature of the relationship between the observed changes in gas concentrations, subsequent alteration of radiative forcing and climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebischer NJ, Coulson JC, Colebrook JM (1990) Parallel long-term trends across 4 marine trophic levels and weather. Nature 347:753–755

    Google Scholar 

  • Aiken J, Moore GF, Holligan PM (1992) Remote sensing of oceanic biology in relation to global climate change. J Phycol 28(5):579–590

    Google Scholar 

  • Amon RMW, Benner R (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41(1):41–51

    Google Scholar 

  • Anderson LA, Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem Cy 8:65–80

    Google Scholar 

  • Anderson TR, Spall SA, Yool A, Cipollini P, Challenor PG, Fasham MJR (2001) Global fields of sea surface dimethylsufide predicted from chlorophyll nutrients and light. J Mar Res 30:1–20

    Google Scholar 

  • Archer DE, Johnson K (2000) A model of the iron cycle in the ocean. Global Biogeochem Cy 14:269–279

    Google Scholar 

  • Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–365

    Google Scholar 

  • Arrigo KR, DiTullio GR, Dunbar RB, Robinson DH, VanWoert M, Worthen DL, Lizotte MP (2000) Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea. J Geophys Res 105:8827–8846

    Google Scholar 

  • Banse K (1994) Uptake of inorganic carbon and nitrate by marine plankton and the Redfield ratio. Global Biogeochem Cy 8:81–84

    Google Scholar 

  • Banse K (1998) Review of Longhurst's ‘Ecological geography of the sea’. Limnol Oceanogr 43:1763

    Google Scholar 

  • Barbeau K, Rue EL, Bruland KW, Butler A (2001) Photochemical cychng of iron in the surface ocean mediated by microbial iron (III) — binding ligands. Nature 413:409–413

    Google Scholar 

  • Bates NR, Knap AH, Michaels AF (1998) Contribution of hurricanes to local and global estimates of air-sea exchange of CO2. Nature 395:58–61

    Google Scholar 

  • Battle M, Bender ML, Tans PP, White JWC, Ellis JT, Conway T, Francey RJ (2000) Global carbon sinks and their variability inferred from atmospheric O2 and δ13C. Science 287:2467–2470

    Google Scholar 

  • Beamish RJ, Noakes DJ, McFarlane GA, Klyashtorin L, Ivanov VV, Kurashov V (1999) The regime concept and natural trends in the production of Pacific salmon. Can J Fish Aquat Sci 56:516–526

    Google Scholar 

  • Beardall J, Beer S, Raven JA (1998) Biodiversity of marine plants in an era of climate change: some predictions based on physiological performance. Bot Mar 41:113–123

    Google Scholar 

  • Behrenfeld MJ, Kolber ZS (1999) Widespread iron limitation of phytoplankton in the South Pacific Ocean. Science 283:840–843

    Google Scholar 

  • Behrenfeld MJ, Bale AJ, Kolber ZS, Aiken J, Falkowski PG (1996) Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383:508–511

    Google Scholar 

  • Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, Falkowski PG, Field CB, Frouin R, Esaias WE, Kolber DD, Pollack NH (2001) Biospheric primary production during an ENSO transition. Science 291:2594–2597

    Google Scholar 

  • Berman-Frank I, Gullen JT, Shaked Y, Sherrell RM, Falkowski PG (2001) Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol Oceanogr 46(6):1249–1260

    Google Scholar 

  • Bigg GR (1996) The oceans and climate. University Press, Cambridge, UK

    Google Scholar 

  • Blaha JP, Born GH, Guinasso NL, Herring HJ, Jacobs GA, Kelly FJ, Leben RR, Martin RD, Mellor GL, Niiler PP, Parker ME, Patchen RC, Schaudt K, Scheffner NW, Shum CK, Ohlmann C, Sturges W, Weatherly GL, Webb D, White HJ (2000) Gulf of Mexico ocean monitoring system. Oceanography 13:10–15

    Google Scholar 

  • Blain S, et al. (2001) A biogeochemical study of the island mass effect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean. Deep-Sea Res Pt I 48:163–187

    Google Scholar 

  • Bopp L, Monfray P, Aumont O, Dufresne J -L, Le Treut H, Madec G, Terray L, Orr JC (2001) Potential impact of climate change on marine export production. Global Biogeochem Cy 15:81–99

    Google Scholar 

  • Bothwell ML, Sherbot DMJ, Pollock CM (1994) Ecosystem response to solar ultraviolet-B radiation: influence of trophic-level interactions. Science 265:97–100

    Google Scholar 

  • Boville BA, Gent PR (1998) The NCAR Climate System Model, version one. J Climate 11:1115–1130

    Google Scholar 

  • Bowie AR, Maldonado MT, Frew RD, Croot PL, Achterberg EP, Mantoura RFC, Worsfold PJ, Law CS, Boyd PW (2001) The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean. Deep-Sea Res Pt II 48:2703–2745

    Google Scholar 

  • Boyd PW, Newton PP (1999) Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces. Deep-Sea Res Pt I 46:63–91

    Google Scholar 

  • Boyd PW, Wong CS, Merrill J, Whitney F, Snow J, Harrison PJ, Gower J (1998) Atmospheric iron supply and enhance vertical carbon flux in the NE subarctic Pacific: Is there a connection? Global Biogeochem Cy 12:429–441

    Google Scholar 

  • Boyd PW, Sherry ND, Berges JA, Bishop JKB, Calvert SE, Charette MA, Giovannoni SJ, Goldblatt R, Harrison PJ, Moran SB, Roy S, Soon M, Strom S, Thibault D, Vergin KL, Whitney FA, Wong CS (1999) Transformations of biogenic particulates from the pelagic to the deep ocean realm. Deep-Sea Res Pt II 46:2761–2792

    Google Scholar 

  • Boyd PW, Watson A, Law CS, Abraham E, Trull T, Murdoch R, Bakker DCE, Bowie AR, Buesseler K, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, La Roche J, Liddicoat M, Ling R, Maldonado M, McKay RM, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertihsation of waters. Nature 407:695–702

    Google Scholar 

  • Bratbak G, Wilson W, Heldal M (1996) Viral control of Emiliania huxleyi blooms. J Marine Syst 9(1–2):75–81

    Google Scholar 

  • Broecker WS (1990) Comment on ‘Iron deficiency limits phyto-plankton growth in Antarctic waters‘ by John H. Martin et al. Global Biogeochem Cy 4:3–4

    Google Scholar 

  • Broecker WS (1997) Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science 278:1582–1594

    Google Scholar 

  • Broecker WS, Henderson GM (1998) The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography 13:352–364

    Google Scholar 

  • Brown CW, Yoder JA (1994) Coccolithophore blooms in the global ocean. J Geophys Res 104C:1541–1558

    Google Scholar 

  • Cabrera S, López M, Tartarotti B (1997) Phytoplankton and zoo-plankton response to ultraviolet radiation in a high-altitude Andean lake: short- versus long-term effects. J Plankton Res 19:1565–1582

    Google Scholar 

  • Caldeira K, Duffy PB (2000) The role of the Southern ocean in uptake and storage of anthropogenic carbon dioxide. Science 287:620–622

    Google Scholar 

  • Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium: a globally significant cyanobacterium. Science 276:1221–1229

    Google Scholar 

  • Carlson CA, Ducklow HW, Michaels AF (1994) Annual flux of dissolved organic carbon from the euphotic zone in the north-western Sargasso Sea. Nature 371:405–408

    Google Scholar 

  • Carpenter EJ (1973) Nitrogen fixation by Oscillatoria (Trichodesmium) thiebautii in the southwestern Sargasso Sea. Deep-Sea Res 20:285–288

    Google Scholar 

  • Carpenter EJ, Romans K (1991) Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean. Science 254:1356–1358

    Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661

    Google Scholar 

  • Chavez FP, Strutton PG, Friederich GE, Feely RA, Feldman GC, Foley DG, McPhaden MJ (1999) Biological and chemical response of the equatorial Pacific Ocean to the 1997–98 El Nino. Science 286:2126–2131

    Google Scholar 

  • Chen C-TA, Liu KK, McDonald R (2003) Continental margin exchanges. In: Fasham MJR (ed) Ocean biogeochemistry. Chap. 3. Springer-Verlag, Heidelberg (this volume)

    Google Scholar 

  • Christian JR, Karl DM (1995) Bacterial ectoenzymes in marine waters: activity ratios and temperature responses in three ocea-nographie provinces. Limnol Oceanogr 40:1042–1049

    Google Scholar 

  • Christian JR, Lewis MR, Karl DM (1997) Vertical fluxes of carbon, nitrogen and phosphorus in the North Pacific subtropical gyre near Hawaii. J Geophys Res 102:15667–15677

    Google Scholar 

  • Ciotti A-M, Gullen JJ, Lewis MR (1999) A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color. J Geophys Res 104(C1):1559–1578

    Google Scholar 

  • Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S, Chavez FP, Ferioli L, Sakamoto C, Rodgers P, Millero F, Steinberg P, Night-ingale P, Cooper D, Cachlan WP, Landry MR, Constantinou J, Rollwagen G, Trasvina A, Kudela R (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–501

    Google Scholar 

  • Codispoti LA (1989) Phosphorus vs. nitrogen limitation of new and export production. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past, pp 377–394, John Wiley & Sons, New York

    Google Scholar 

  • Codispoti LA (1995) Is the ocean losing nitrate? Nature 376:724

    Google Scholar 

  • Colebrook JM (1986) Environmental influences on long-term variability in marine plankton. Hydrobiology 142:309–325

    Google Scholar 

  • Colebrook JM, Robinson GA, Hunt HG, Roskell J, John AWG, Bottrell HH, Lindley JA, Collins NR, Halliday NC (1984) Continuous plankton records: a possible reversal in the downward trend in the abundance of the plankton of the North Sea and the Northeast Atlantic. Journal du Conseil International pour l’Exploration de la Mer 41:304–306

    Google Scholar 

  • Conkwright M, Levitus S, Boyer TP (1994) NOAA atlas NESDIS 1, world ocean atlas 1994, vol. 1: nutrients. Technical report. Natural Environment Satellite, Data and Information Service, Nat. Oceanic and Atmospheric Administration, U.S. Department of Commerce, Washington D.C

    Google Scholar 

  • Cornell SE, Jickells TD, Thornton CA (1998) Urea in rainwater and atmospheric aerosol. Atmos Environ 32:1903–1910

    Google Scholar 

  • Corti S, Molteni F, Palmer TN (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398:799–802

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Google Scholar 

  • Gullen JJ, Lesser MP (1991) Inhibition of photosynthesis by ultra-violet-radiation as a function of dose and dosage rate — results for a marine diatom. Mar Biol 111:183–190

    Google Scholar 

  • Gullen JJ, Neale PJ, Lesser MP (1992) Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258:646–650

    Google Scholar 

  • Curran MAJ, Jones GB, Burton H (1998) The spatial distribution of DMS and DMSP in the Australasian sector of the Southern Ocean. J Geophys Res 103:16677–16698

    Google Scholar 

  • de Baar HJW, Boyd PW (2000) The role of iron in plankton ecology and carbon dioxide transfer of the global oceans. In: Hanson RB, Ducklow HW, Field JG (eds) The dynamic ocean carbon cycle: a midterm synthesis of the Joint Global Ocean Flux Study, Chap. 4. International Geosphere Biosphere Programme Book Series, pp 61-140, Cambridge University Press

    Google Scholar 

  • de Baar HJW, de Jong JTM, Bakker DC, Löscher BM, Veth C, Bathman U, Smetacek V (1995) Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373:412–415

    Google Scholar 

  • de Baar HJW, de Jong JTM, Nolting RF, Timmermans KR, van Leeuwe MA, Bathmann U, van der Loeff MR, Sildam J (1999) Low dissolved Fe and the absence of diatom blooms in remote Pacific waters of the Southern Ocean. Mar Chem 66:1–34

    Google Scholar 

  • de la Mare WK (1997) Abrupt mid-twentieth century decline in Antarctic sea-ice extent from whaling records. Nature 389:57–60

    Google Scholar 

  • Denman K, Hofmann E, Marchant H (1996) Marine biotic responses and feedbacks to environmental change and feedbacks to climate. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995, The science of climate change. Cambridge University Press, pp 483–516

    Google Scholar 

  • Denman KL, Pena MA (2000) Beyond JGOFS. In: Hanson RB, Ducklow HW, Field JG (eds) The dynamic ocean carbon cycle: a midterm synthesis of the Joint Global Ocean Flux Study, Chap. 4. International Geosphere Biosphere Programme Book Series, Cambridge Univerity Press, pp 469–490

    Google Scholar 

  • DiTullio GR, Laws EA (1991) Impact of an atmospheric-oceanic disturbance on phytoplankton community dynamics in the North Pacific Central Gyre. Deep-Sea Res 38:1305–1329

    Google Scholar 

  • DiTullio GR, Smith WO Jr. (1996) Spatial patterns in phytoplankton biomass and pigment distributions in the Ross Sea. J Geophys Res 101:467–477

    Google Scholar 

  • Doney SC (1999) Major challenges confronting marine biogeochemical modeling. Global Biogeochem Cy 13:705–714

    Google Scholar 

  • Doney SC, Sarmiento JL (1999) Ocean biogeochemical response to climate change. U.S. JGOFS, Synthesis and Modeling Project Planning Workshop Report

    Google Scholar 

  • Doney SC, Lindsay K, Moore JK (2003) Global ocean carbon cycle modeling. In: Fasham MJR (ed) Ocean biogeochemistry. Chap. 9. Springer-Verlag, Heidelberg (this volume)

    Google Scholar 

  • Duce RA, Tindale NW (1991) Chemistry and biology of iron and other trace metals. Limnol Oceanogr 36:1715–1726

    Google Scholar 

  • Dupouny C, Neveux J, Subramaniam A, Mulholland MR, Montoya JP, Campbell L, Carpenter EJ, Capone DG (2000) Satellite captures Trichodesmium blooms in the southwestern tropical Pacific. EOS 81:13–16

    Google Scholar 

  • Ellwood MJ, van den Berg CMC (2001) Determination of organic complexation of cobalt in seawater by cathodic stripping voltammetry. Mar Chem 75(1–2):33–47

    Google Scholar 

  • Emerson S, Quay P, Karl D, Winn C, Tupas L, Landry M (1997) Experimental determination of the organic carbon flux from open-ocean surface waters. Nature 389:951–954

    Google Scholar 

  • Emerson S, Mecking S, Abell J (2001) The biological pump in the subtropical North Pacific Ocean: nutrient sources, redfield ratios and recent changes. Global Biogeochem Cy 15:535–554

    Google Scholar 

  • Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275

    Google Scholar 

  • Falkowski PG, Wilson C (1992) Phytoplankton productivity in the North Pacific ocean since 1900 and implications for absorption of anthropogenic CO2. Nature 358:741–743

    Google Scholar 

  • Falkowski PG, Kim Y, Kolber Z, Wilson C, Wirick C, Cess R (1992) Natural versus anthropogenic factors affecting low-level cloud albedo over the North-Atlantic. Science 256:1311–1313

    Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on primary production. Science 281:200–206

    Google Scholar 

  • Falkowski PG, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore B III, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296

    Google Scholar 

  • Fedorov AV, Philander SG (2000) Is El Nino changing? Science 288:1997–2002

    Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Google Scholar 

  • Franck VM, Brzezinski MA, Coale KH, Nelson DM (2000) Iron and silicic acid concentrations regulate Si uptake north and south of the polar frontal zone in the Pacific Sector of the Southern Ocean. Deep-Sea Res Pt II 47:3315–3338

    Google Scholar 

  • Fung I, Meyn SK, Tegen I, Doney SC, John JG, Bishop KB (2000) Iron supply and demand in the upper ocean. Global Biogeochem Cy 14:281–295

    Google Scholar 

  • Gage DA, Rhodes D, Nolte KD, Hicks WA, Leustek T, Cooper AJL, Hanson AD (1997) A new route for synthesis of dimethylsulpho-niopropionate in marine algae. Nature 387:891–894

    Google Scholar 

  • Galloway JN, Levy H II, Kasibhatla PS (1994) Year 2020: consequences of population growth and development on deposition of oxidised nitrogen. Ambio 23:120–123

    Google Scholar 

  • Galloway JN, Schlesinger WH, Levy H, Michaels A, Schnoor JL (1995) Nitrogen fixation: anthropogenic enhancement-environmental response. Global Biogeochem Cy 9(2):235–25

    Google Scholar 

  • Gordon HR, Boynton GC, Balch WM, Groom SB, Harbour DS, Smyth TJ (2001) Retrieval of coccolithophore calcite concentration from seaWiFS imagery. Geophys Res Lett 28(8):1587–1590

    Google Scholar 

  • Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem Cy 11:235–266

    Google Scholar 

  • Hannon E, Boyd PW, Silvoso M, Lancelot C (2001) Modeling the bloom evolution and carbon flows during SOIREE: implications for future in situ iron-enrichments in the Southern Ocean. Deep-Sea Res Pt II 48:2745–2774

    Google Scholar 

  • Hansell DA, Carlson CA (1998) Net community production of dissolved organic carbon. Global Biogeochem Cy 12:443–453

    Google Scholar 

  • Hansell DA, Feely RA (2000) Atmospheric intertropical convergence impacts surface ocean carbon and nitrogen biogeochemistry in the western tropical Pacific. Geophys Res Lett 27:1013–1016

    Google Scholar 

  • Hansen J, Rossow W, Carlson B, Lacis A, Travis L, Del Genio A, Fung I, Cairns B, Mishchenko M, Sato M (1995) Low-cost longterm monitoring of global climate forcings and feedbacks. Climatic Change 31:247–271

    Google Scholar 

  • Harrison PJ, Boyd PW, Varela DE, Takeda S, Shiomoto A, Odate T (1999) Comparison of factors controlling phytoplankton productivity in the NE and NW Subarctic Pacific gyres. Prog Oceanogr 42:205–234

    Google Scholar 

  • Harvey LDD (2000) Upscaling in global change research. Climatic Change 44:225–263

    Google Scholar 

  • Hasselmann K (1999) Linear and nonlinear signatures. Nature 398:755–756

    Google Scholar 

  • Heath MR, Backhaus JO, Richardson K, McKenzie E, Slagstad D, Beare D, Dunn J, Fraser JG, Gallego A, Hainbucher D, Hay S, Jönasdöttir S, Madden H, Mardaljevic J, Schacht A (1999) Climate fluctuations and the spring invasion of the North Sea by Calanus finmarchicus. Fish Oceanogr 8:163–176

    Google Scholar 

  • Heinze C, Maier-Reimer E, Winn K (1991) Glacial rCO2 reduction by the world ocean: experiments with the Hamburg carbon cycle model. Paleoceanography 6:395–430

    Google Scholar 

  • Herut B, Krom MD, Pan G, Mortimer R (1999) Atmospheric input of nitrogen and phosphorus to the southeast Mediterranean: sources, fluxes and possible impact. Limnol Oceanogr 44:1683–1692

    Google Scholar 

  • Holligan PM, Turner SM, Liss PS (1987) Measurements of dimethyl sulphide in frontal regions. Cont Shelf Res 7:213–224

    Google Scholar 

  • Holligan PM, Fernandez E, Aiken J, Balch WM, Boyd P, Burkill PH, Finch M, Groom SB, Malin G, Muller K, Purdie DA, Robinson C, Trees CG, Turner SM, van der Wal P (1993) A biochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochem Cy 7:879–900

    Google Scholar 

  • Houghton JT, Jenkins GJ, Ephraums JJ (1990) Climate change — the IPCC scientific assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Houghton JT, Filho LGM, Harris CN, Kattenberg A, Maskell K (eds), Lakeman JA (production ed) (1996) Climate change 1995: the science of climate change. Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Press Syndicate of the University of Cambridge, USA

    Google Scholar 

  • Husar RB, Prospero JM, Stowe LL (1997) Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product. J Geophys Res 102:16889–16909

    Google Scholar 

  • Husar RB, Tratt DM, Schichtel BA, Falke SR, Li F, Jaffe D, Gasso S, Gill T, Laulainen NS, Lu F, Reheis MC, Chun Y, Westphal D, Holben BN, Gueymard C, McKendry I, Kuring N, Feldman GC, McClain C, Frouin RJ, Merrill J, DuBois D, Vignola F, Murayama T, Nickovic S, Wilson WE, Sassen K, Sugimoto N, Malm WC (2001) Asian dust events of April 1998. J Geophys Res 106(D16):18317–18330

    Google Scholar 

  • Hutchins DA, Bruland KW (1998) Iron-limited diatom growth and Si:N uptake ratios in a coastal upweUing regime. Nature 393: 561–564

    Google Scholar 

  • Hutchins DA, DiTullio GR, Zhang Y, Bruland KW (1998) An iron limitation mosaic in the California upwelling regime. Limnol Oceanogr 43:1037–1054

    Google Scholar 

  • Iglesias-Rodriguez MD, Brown CW, Doney SC, Kleypas J, Kolber D, Kolber Z, Hayes PK, Falkowski PG (2002) Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophores. Global Biogeochem Cy (in press)

    Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change, edited by J.T. Houghton et al., Cambridge University Press, New York

    Google Scholar 

  • JGOFS (1991) The Joint Global Ocean Flux Study Science Plan. Scientific Committee on Ocean Research, JGOFS, Bergen, Norway, 61 pp

    Google Scholar 

  • JGOFS (1999) Synthesis and modeling project. In: Doney SC, Sarmiento JL (ed) Ocean biogeochemical response to climate change workshop. US JGOFS Planning Office Report No. 22, Woods Hole, MA, 106 pp

    Google Scholar 

  • Jickells TD (1999) The inputs of dust-derived elements to the Sargasso Sea: a synthesis. Mar Chem 68:5–14

    Google Scholar 

  • Jickells TD, Spokes LJ (2001) Atmospheric iron inputs to the oceans. In: Turner D, Hunter KA (eds) The Biogeochemistry of iron in seawater. John Wiley & Sons, New York Chichester, pp 85–122

    Google Scholar 

  • Johnson KS (2001) Iron supply and demand in the upper ocean: is extraterrestrial dust a significant source of bio available iron? Glob Biogeochem Cy 15:61–63

    Google Scholar 

  • Johnson KS, Gordon RM, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57:137–161

    Google Scholar 

  • Johnson KS, Chavez FP, Friederich GE (1999) Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature 398:697–699

    Google Scholar 

  • Joos F, Plattner G -K, Stocker TF, Marchai O, Schmittner A (1999) Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284:464–467

    Google Scholar 

  • Karl DM (1999) A sea of change: biogeochemical variability in the north Pacific subtropical gyre. Ecosystems 2:181–214

    Google Scholar 

  • Karl DM, Letelier R, Hebel D, Tupas L, Dore J, Christian J, Winn C (1995) Ecosystem changes in the north Pacific subtropical gyre attributed to the 1991–92 El Niño. Nature 373:232–234

    Google Scholar 

  • Karl DM, Bidigare RR, Letelier RM (2001) Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: the domain shift hypothesis. Deep-Sea Res II 48:1449–1470

    Google Scholar 

  • Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388:533–538

    Google Scholar 

  • Karl DM (1999) A sea of change: biogeochemical variability in the North Pacific Subtropical Gyre. Ecosystems 2:181–214

    Google Scholar 

  • Karl DM, Bates N, Emerson S, Harrison PJ, Jeandel C, Elinas O, Liu KK, Marty J-C, Michaels AF, Miguel JC, Neuer S, Nojiri Y, Wong CS (2003) Temporal studies of biogeochemical processes determined from ocena time-series observations during the JGOFS era. In: Fasham MJR (ed) Ocean biogeochemistry. Springer-Verlag, Heidelberg, (this volume)

    Google Scholar 

  • Kattenberg A, et al. (1996) Climate models - projections of future climate. In: Houghton JT, Filho LGM, Harris CN, Kattenberg A, Maskell K (eds) Lakeman JA (production ed) Climate change

    Google Scholar 

  • 1995: the science of climate change. Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Press Syndicate of the University of Cambridge, USA

    Google Scholar 

  • Keeling CD, Whorf T, Wahlen M, Van Der Plicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–670

    Google Scholar 

  • Keeling RF, Piper SC, Heimann M (1996) Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381:218–221

    Google Scholar 

  • Kellogg WW (1983) Feedback mechanisms in the climate system affecting future levels of carbon dioxide. J Geophys Res 88:1263-1269

    Google Scholar 

  • Kettle AJ, Andreae MO, Amouroux D, Andreae TW, Bates TS, Berresheim H, Bingemer H, Boniforti R, Curran MAJ, DiTullio GR, Helas G, Jones GB, Keller MD, Kiene RP, Leek C, Levasseur M, Mahn G, Maspero M, Matrai P, McTaggart AR, Mihalopoulos N, Nguyen BC, Novo A, Putaud JP, Rapsomanikis S, Roberts G, Schebeske G, Sharma S, Simo R, Staubes R, Turner S, Uher G (1999) A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Global Biogeochem Cy 13:399–444

    Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J -P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Google Scholar 

  • Körtzinger A, Koeve W, Kahler P, Mintrop L (2001) C:N ratios in the mixed layer during the productive season in the Northeast Atlantic Ocean. Deep-Sea Res Pt I 48:661–688

    Google Scholar 

  • Kumar N, Anderson RF, Mortlock RA, Froelich PN, Kubik P, Dittrich-Hannen B, Suter M (1995) Increased biological productivity and export production in the glacial Southern Ocean. Nature 378:675–680

    Google Scholar 

  • Lancelot C, Billen G (1985) Carbon-nitrogen relationship in nutrient metabolism of coastal marine ecosystems. In: Jannash HW, Leb Williams PJ (eds) Advance in aquatic microbiology, vol. 3. Academic Press, London, pp 263–321

    Google Scholar 

  • Lancelot C, Hannon E, Becquevort S, Veth C, de Baar HJW (2000) Modeling phytoplankton blooms and related carbon export production in the Southern Ocean: application to the Atlantic sector in austral spring 1992. Deep-Sea Res Pt I 47:1621–1662

    Google Scholar 

  • Lashof DA (1989) The dynamic greenhouse: feedback processes that may influence future concentrations of atmospheric trace gases and climatic change. Climatic Change 14:213–242

    Google Scholar 

  • Lefèvre N, Watson AJ (1999) Modehng the geochemical cycle of iron in the oceans and its impact on atmospheric CO2 concentrations. Global Biogeochem Cy 13:727–736

    Google Scholar 

  • Legendre L, Rassoulzadegan F (1995) Ice core record of oceanic emissions of dimethylsulphide during the last climate cycle. Nature 350:144–146

    Google Scholar 

  • Legrand M, Feniet-Saigne C, Saltzman ES, Germain C, Barkov NI, Petrov VN (1991) Plankton and nutrient dynamics in marine waters. Ophelia 41:153–172

    Google Scholar 

  • Lenes JM, Darrow BP, Cattrall C, Heil CA, Callahan M, Vargo GA, Byrne RH, Prospero JM, Bates DE, Fanning KA, Walsh JJ (2001) Iron fertilization and the Trichodesmium response on the West Florida Shelf. Limnol Oceanogr 46(6):1261–1277

    Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229

    Google Scholar 

  • Lipschultz F (1999) Climate change and the areal extent of nitrogen fixers. U.S. JGOFS Report 22

    Google Scholar 

  • Lipschultz F, Owens NJP (1996) An assessment of nitrogen fixation as a source of nitrogen to the North Atlantic. Biogeochemistry 35:261–274

    Google Scholar 

  • Liss PS, Malin G, Turner SM, Holligan PM (1994) Dimethyl sulphide and Phaeocystis: a review. Workshop on the ecology of Phaeocystis-dominated ecosystems, January 1991, Brussels (Belgium). J Marine Syst 5(1):41–53

    Google Scholar 

  • Loeb V, Siegel V, Holm-Hansen O, Hewitt R, Fraser W, Trivelpiece W, Trivelpiece S (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900

    Google Scholar 

  • Longhurst A (1995) Seasonal cycles of pelagic production and consumption. Prog Oceanogr 36:77–167

    Google Scholar 

  • Longhurst A (1998) Ecological geography of the sea. Academic Press, San Diego

    Google Scholar 

  • Macilwain C (2000) Ocean researchers dive to deep-sea stations. Nature 406:449–449

    Google Scholar 

  • Maher BA, Dennis PF (2001) Northern hemisphere dust fluxes: significance for Fe fertilisation in the Southern Ocean? Nature 411:176–180

    Google Scholar 

  • Mahowald N, Kohfeld K, Hansson M, Balkanski Y, Harrison SP, Prentice IC, Schulz M, Rodhe H (1999) Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J Geophys Res 104:15,895–15916

    Google Scholar 

  • Malin G (1997) Sulphur, climate and the microbial maze. Nature 387:857–859

    Google Scholar 

  • Malin G, Turner S, Liss P, Holligan P, Harbour D (1993) Dimethyl-sulphide and dimethylsulphoniopropionate in the Northeast Atlantic during the summer coccolithophore bloom. Deep-Sea Res Pt I 40(7):1487–1508

    Google Scholar 

  • Malin G, Wilson WH, Bratbak G, Liss PS, Mann NH (1998) Elevated production of dimethylsulfide resulting from viral infection of cultures of Phaeocystis pouchetii. Limnol Oceanogr 43(6):1389–1393

    Google Scholar 

  • Manabe S, Stouffer RJ (1993) Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system. Nature 364(6434):215–218

    Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. B Am Meteorol Soc 78:1069–1079

    Google Scholar 

  • Margalef R (1997) Our biosphere. In: Kinne O (ed) Excellence in ecology. Chap. 10. Ecology Institute, Oldendorf/Luhe, Germany

    Google Scholar 

  • Marra J, Langdon C, Knudson CA (1995) Primary production, water column changes, and the demise of a Phaeocystis bloom at the marine light-mixed layers site (59° N, 21° W) in the Northeast Atlantic Ocean. J Geophys Res 100:6633–6644

    Google Scholar 

  • Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5(1):1-13

    Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE, Broenkow WW (1989) VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res 36:649–680

    Google Scholar 

  • Martin JH, Fitzwater SE, Gordon RM, Hunter CN, Tanner S J (1993) Iron, primary production and carbon-nitrogen fluxes during the JGOFS North Atlantic Bloom Experiment. Deep-Sea Res Pt II 40:115–134

    Google Scholar 

  • Matear RJ, Hirst AC (1999) Climate change feedback on the future oceanic CO2 uptake. Tellus B 51:722–733

    Google Scholar 

  • McCartney M (1997) Climate change: is the ocean at the helm? Nature 377:521–522

    Google Scholar 

  • McGowan JA (1990) Climate and and change in oceanic ecosystems: the value of time-series data. Tree 5(9):293–295

    Google Scholar 

  • McGowan JA (1999) A biological WOCE. Oceanography 12:33–35

    Google Scholar 

  • McGowan JA, Cayan RC, Dorman LM (1998) Climate-ocean variability and ecosystem response in the Northeast Pacific. Science 281:210–217

    Google Scholar 

  • McKenzie RJ, Conner B, Bodeker G (1999) Increased summertime UV radiation in New Zealand in response to ozone loss. Science 285:1709–1711

    Google Scholar 

  • Merrill J, Arnold E, Leinen M, Weaver C (1994) Mineralogy of aeolian dust reaching the North Pacific Ocean 2. Relationship of mineral assemblages to atmospheric transport patterns. J Geophys Res 99:21025–21032

    Google Scholar 

  • Merrill JT (1989) Atmospheric long-range transport to the Pacific Ocean. In: Riley JP, Chester R, Duce RA (eds) Chemical ocea-nography, vol. 10. Academic Press, London

    Google Scholar 

  • Michaels AF, Knap AH (1996) Overview of the U.S. JGOFS Bermuda Atlantic Time-series Study and the Hydrostation S program. Deep-Sea Res Pt II 43(2–3):157–198

    Google Scholar 

  • Michaels AF, Siegel DA, Johnson RJ, Knap AH, Galloway JN (1993) Episodic inputs of atmospheric nitrogen to the Sargasso Sea — contributions to new production and phytoplankton blooms. Global Biogeochem Cy 7:339–351

    Google Scholar 

  • Michaels AF, Olson D, Sarmiento JL, Ammerman JW, Fanning K, Jahnke R, Knap AH, Lipschultz F, Prospero JM (1996) Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean. Biogeochemistry 35(1):181–226

    Google Scholar 

  • Mitchell JFB, Johns TC, Senior CA (1998) Transient response to increasing greenhouse gases using models with and without flux adjustment. Hadley Centre Technical Note 2, Hadley Centre for Climate Prediction and Research, Meteorological Office, Bracknell, RG12 2SY, UK, 26 pp

    Google Scholar 

  • Moisan TA, Mitchell BG (1999) Photophysiological acclimation of Phaeocystis antartica Karsten under light limitation. Limnol Oceanogr 44:247–258

    Google Scholar 

  • Moran MA, Hodson RE (1994) Support of bacterioplankton production by dissolved humic substances from three marine environments. Mar Ecol Prog Ser 110(2–3):241–247

    Google Scholar 

  • Morel FMM, Reinfelder JR, Roberts SB, Chamberlain CP, Lee JG, Yee D (1994) Zinc and carbon co-limitation of marine phyto-plankton. Nature 369:740–742

    Google Scholar 

  • Mostajir B, Demers S, de Mora S, Belzile C, Chanut J-P, Gosselin M, Roy S, Villegas PZ, Fauchot J, Bouchard J, Bird D, Monfort P, Levasseur M (1999) Experimental test of the effect of ultraviolet-B radiation in a planktonic community. Limnol Oceanogr 44:586–596

    Google Scholar 

  • Muggli DL, Lecourt M, Harrison PJ (1996) Effects of iron and nitrogen source on the sinking rate, physiology and metal composition of an oceanic diatom from the subarctic Pacific. Mar Ecol Prog Ser 132:215–227

    Google Scholar 

  • MuUineaux CW (1999) The plankton and the planet. Science 28:801–802

    Google Scholar 

  • Nanninga HJ, Tyrrell T (1996) Importance of light for the formation of algal blooms by Emiliania huxleyi. Mar Ecol Prog Ser 136:195–203

    Google Scholar 

  • Napp JM, Hunt GL Jr. (2001) Anomalous conditions in the south-eastern Bering Sea 1997: linkages among climate, weather, ocean and biology. Fish Oceanogr 10:61–69

    Google Scholar 

  • Neale PJ, Gullen JJ, Davis RF (1998a) Inhibition of marine photo-synthesis by ultraviolet radiation: variable sensitivity of phytoplankton in the Weddell-Scotia confluence during the Austral spring. Limnol Oceanogr 43:433–488

    Google Scholar 

  • Neale PJ, Gullen JJ, Davis RF (1998b) Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton. Nature 392:585–589

    Google Scholar 

  • Nickovic S, Dobricic S (1996) A model for long-range transport of desert dust. Mon Weather Rev 124:2537–2544

    Google Scholar 

  • Nicol S, Pauly T, Bindoff NL, Wright S, Thiele D, Hosie GW, Strutton PG, Woehler E (2000) Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent. Nature 406:504–507

    Google Scholar 

  • O’Brien CM, Fox CJ, Planque B, Casey J (2000) Climate variability and North Sea cod. Nature 404:142–143

    Google Scholar 

  • Orr JC (1999) On ocean carbon-cycle modal comparison. Tellus B 51:509–510

    Google Scholar 

  • Owens NJP, Cook D, Colebrook M, Hunt H, Reid PC (1989) Long term trends in the occurrence of Phaeocystis sp. in the north-east Atlantic. J Mar Biol Assoc Uk 69(4):813–821

    Google Scholar 

  • Paerl HW (1999) Cultural eutrophication of shallow coastal waters: coupling changing anthropogenic nutrient inputs to regional management approaches. Limnologica 29(3):249–254

    Google Scholar 

  • Paerl HW, Whitall DR (1999) Anthropogenically-derived atmospheric nitrogen deposition, marine eutrophication and harmful algal bloom expansion: Is there a link? Ambio 28:307–311

    Google Scholar 

  • Paerl HW, Willey JD, Go M, Peierls BL, Pinckney JL, Fogel ML (1999) Rainfall stimulation of primary production in western Atlantic Ocean waters: roles of different nitrogen sources and colimiting nutrients. Mar Ecol Prog Ser 176:205–214

    Google Scholar 

  • Pan Z, Arritt RW, Gutowski WJ Jr., Takle ES (2001) Soil moisture in a regional climate model: simulation and projection. Geophys Res Lett 28:2947–2950

    Google Scholar 

  • Parmesan C (1996) Climate and species' range. Nature 382:765–766

    Google Scholar 

  • Parslow JS (1981) Phytoplankton-zooplankton interactions: data analysis and modelling (with particular reference to ocean station Papa [50° N, 145° W] and controlled ecosystem experiments). Deep-Sea Res Pt I 41:1617–1642

    Google Scholar 

  • Pate-Cornell ME (1996) Uncertainties in global change estimates. Climatic Change 33:145–149

    Google Scholar 

  • Pausz C, Herndl GJ (1999) Role of ultraviolet radiation on phyto-plankton extracellular release and its subsequent utilization by marine bacterioplankton. Aquat Microb Ecol 18:85–93

    Google Scholar 

  • Peierls BL, Paerl HW (1997) Bioavailability of atmospheric organic nitrogen deposition to coastal phytoplankton. Limnol Oceanogr 42:1819–1823

    Google Scholar 

  • Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antartica. Nature 399:429–436

    Google Scholar 

  • Piketh SJ, Tyson PD, Steffen W (2000) Aeolian transport from southern Africa and iron fertilization of marine biota in the South Indian Ocean. S Afr J Sci 96:244–246

    Google Scholar 

  • Polovina JJ, Mitchum GT, Evans GT (1995) Decadal and basin-scale variation in mixed layer depth and the impact on biological production in the Central and North Pacific, 1960–88. Deep-Sea Res Pt I 42(10):1701–1716

    Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Google Scholar 

  • Powell RT, King DW, Landing WM (1995) Iron distributions in surface waters of the south Atlantic. Mar Chem 50:13–20

    Google Scholar 

  • Price NM, Morel FMM (1999) Biological cycling of iron in the ocean. In: Sigel A, Sigel H (eds) Metal ions in biological systems. Chap. 1, iron transport and storage in microorganisms, plants and animals, vol. 35. Marcel Dekker Inc., New York, pp 1–36

    Google Scholar 

  • Price NM, Ahner BA, Morel FMM (1994) The Equatorial Pacific Ocean: grazer-controlled phytoplankton populations in an iron-limited ecosystem. Limnol Oceanogr 3(3):520–534

    Google Scholar 

  • Prospero JM (2000) Global aerosol report website. http://www.nrlmry.navy.mil/aerosol/globaer_world_loop.htm

  • Prospero JM, Uematsu M, Savoie DL (1989) Mineral aerosol transport to the Pacific Ocean. In: Riley JP, Chester R, Duce RA (eds) Chemical oceanography, vol. 10. Academic Press, London

    Google Scholar 

  • Pye K (1987) Aeolian dust and dust deposits. Academic, San Diego, California

    Google Scholar 

  • Rahmstorf S (1999) Shifting seas in the greenhouse. Nature 399:523–524

    Google Scholar 

  • Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and C assimilation pathway. New Phytol 116:1–17

    Google Scholar 

  • Reid GC (1997) Solar forcing of global climate change since the mid 17th century. Climatic Change 37:391–405

    Google Scholar 

  • Reid PC, Edwards M, Hunt HG, Warner AJ (1998) Phytoplankton change in the North Atlantic. Nature 391:546

    Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Google Scholar 

  • Robertson JE, Robinson C, Turner DR, Holligan P, Watson AJ, Boyd P, Fernandez E, Finch M (1994) The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. Deep-Sea Res Pt I 41:297–314

    Google Scholar 

  • Royer J-F, Chauvin F, Timbal B, Araspin P, Grimai D (1998) A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climate Change 38:307–343

    Google Scholar 

  • Rue EL, Bruland KW (1997) The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Liminol Oceanogr 42:901–910

    Google Scholar 

  • Sait SM, WC Liu, Thompson DJ, Godfray HCJ, Begon M (2000) Invasion sequence affects predator-prey dynamics in a multi-species interaction. Nature 405:448–450

    Google Scholar 

  • Sambrotto RN, Savidge G, Robinson C, Boyd P, Takahashi T, Karl DM, Langdon C, Chipman D, Marra J, Codispoti L (1993) Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature 363:248–250

    Google Scholar 

  • Sanudo-Wilhelmy SA, Kustka AB, Gobler CJ, Hutchins DA, Yang M, Lwiza K, Burns J, Capone DG, Raven JA, Carpenter EJ (2001) Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature 411:66–69

    Google Scholar 

  • Sarmiento JL (1993) Atmospheric CO2 stalled. Nature 365:697–698

    Google Scholar 

  • Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249

    Google Scholar 

  • Schellnhuber HJ (1999) ‘Earth system’ analysis and the second Copernican revolution. Nature 402, (suppl.) C19–C23

    Google Scholar 

  • Schimel D, Enting IG, Heimann M, Wigely TML, Raynaud D, Alves D, Siegenthaler U (1995) CO2 and the carbon cycle. In: Houghton JT, Meira Filho LG, Bruce J, Lee H, Callander BA, Haites E, Harris N, Maskell K (eds) Climate change 1994. IPPC. Cambridge University Press, Cambridge, pp 35–71

    Google Scholar 

  • Schimel D, Alves D, Enting I, Heimann M, Joos F, Raynaud D, Wigley T (1996) CO2 and the carbon cycle. In: Climate change 1995: the science of climate change: contribution of WGI in the second assessment Report of the IPCC. Cambridge University Press, Cambridge, pp 65–86

    Google Scholar 

  • Schindler DW, Bayley SE (1993) The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition. Global Biogeochem Cy 7:717–733

    Google Scholar 

  • Schräg DP (2000) Of ice and elephants. Nature 404:23–69

    Google Scholar 

  • Seager R, Kushnir Y, Visbeck M, Naik N, Miller J, Krahmann G, Gullen H (2000) Causes of Atlantic Ocean climate variability between 1958 and 1998. J Climate 13(16):2845–2862

    Google Scholar 

  • Sedwick PN, DiTullio GR (1997) Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice. Geophys Res Lett 24:2515–2518

    Google Scholar 

  • Sedwick PN, DiTuüio GR, Mackey DJ (2000) Iron and manganese in the Ross Sea, Antarctica: seasonal iron limitation in Antarctic shelf waters. J Geophys Res 105, C5:11321–11336

    Google Scholar 

  • Seitzinger SP, Sanders RW (1999) Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton. Limnol Oceanogr 44:721–730

    Google Scholar 

  • Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286:930–934

    Google Scholar 

  • Shaffer G (1993) Effects of the marine biota on global carbon cycling. In: Heinmann M (ed) The global carbon cycle. Springer-Verlag, Berlin, pp 431–455

    Google Scholar 

  • Shaffer G, Sarmiento JL (1995) Biogeochemical cycling in the global ocean I: a new, analytical model with continuous vertical resolution and high-latitude dynamics. J Geophys Res 100:2659–2672

    Google Scholar 

  • Schindell DT, Rind D, Lonergan P (1998) Increased polar strato-spheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature 392:589–592

    Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125

    Google Scholar 

  • Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–869

    Google Scholar 

  • Simo R (2001) Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Tree 16:287–294

    Google Scholar 

  • Smith DC, Simon M, Alldredge AL, Azam F (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–142

    Google Scholar 

  • Smith RC, Baker KS (1984) The analysis of ocean optical data. Proceedings of the Society of Photo-Optical Instrumentation and Engineering 489, Available as: Ocean Optics VII, pp 119–126

    Google Scholar 

  • Smith RC, Ainley D, Baker K, Domack E, EmsHe S, Fraser B, Kennett J, Leventer A, Mosley-Thompson E, Stammerjohn S, Vernet M (1999) Marine ecosystem sensitivity to climate change: historical observations and paleoecological records reveal ecological transitions in the Antarctic Peninsula region. Bioscience 49:393–404

    Google Scholar 

  • Smith SD, Huxman TW, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Google Scholar 

  • Smith WO Jr., Anderson RF (2000) US Southern Ocean Joint Global Ocean Flux Study Program (AESOPS). Deep-Sea Res Pt II 47:3073–3548

    Google Scholar 

  • Southward AJ (1963) The distribution of some plankton animals in the Enghsh Channel and approaches. III. Theories about long term biological changes including fish. J Mar Biol Assoc Uk 43:1–29

    Google Scholar 

  • Spokes LJ, Yeatman SG, Cornell SE, Jickells TD (2001) The input of nitrogen species to the North East Atlantic: the importance of south easterly flow. Tellus 52:37–49

    Google Scholar 

  • Stegmann PM, Tindale NW (1999) Global distribution of aerosols over the open ocean as derived from the coastal zone color scanner. Global Biogeochem Cy 13:383–397

    Google Scholar 

  • Subramaniam A, Carpenter EJ, Falkowski PG (1999a) Bio-optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. II. A reflectance model for remote sensing. Limnol Oceanogr 44:618–627

    Google Scholar 

  • Subramaniam A, Carpenter EJ, Karentz D, Falkowski PG (1999b) Bio-optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. I. Absorption and photosynthetic action spectra. Limnol Oceanogr 44:608–617

    Google Scholar 

  • Sunda WG, Huntsman SA (1995) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389–392

    Google Scholar 

  • Sutton RT, Allen MR (1997) Decadal predictability of North Atlantic sea surface temperature and climate. Nature 388:563–567

    Google Scholar 

  • Takahashi T, Olafsson J, Goddard JG, Chipman DW, Sutherland SC (1993) Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochem Cy 7:843–878

    Google Scholar 

  • Takeda S (1998) Influence of iron availability on nutrient consumption ration of diatoms in oceanic waters. Nature 3, 93:774–777

    Google Scholar 

  • Tegen I, Fung I (1995) Contribution to the atmospheric mineral aerosol load from land surface modification. J Geophys Res 100:707–726

    Google Scholar 

  • Thompson PM, Ollason JC (2001) Lagged effects of ocean climate change on fulmar population dynamics. Nature 413:417–420

    Google Scholar 

  • Toggweiler JR (1993) Oceanography — carbon overconsumption. Nature 363:210–211

    Google Scholar 

  • Tortell PD, Reinfelder JR, Morel FMD (1997) Active uptake of bicarbonate by diatoms. Nature 390:243–244

    Google Scholar 

  • Tortell PD, DiTullio GR, Sigman DM, Morel FMM (2002) CO2 effects on species composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Mar Ecol Prog Ser 236:37–43

    Google Scholar 

  • Trenberth KE (1998) Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change. In: Climate change 39. Kluwer Academic Publishers, The Netherlands, pp 667–694

    Google Scholar 

  • Turner SM, Nightingale PD, Spokes LJ, Liddicoat MI, Liss PS (1996) Increased dimethyl sulphide concentrations in sea water from in situ iron enrichment. Nature 383:513–517

    Google Scholar 

  • Tyrrell T, Taylor AH (1995) A modelling study of Emiliania huxleyi in the NE Atlantic. J Marine Syst 9:83–112

    Google Scholar 

  • Tyrrell T, Holligan PM, Mobley CD (1999) Optical impacts of oceanic coccolithophore blooms. J Geophys Res 102:3223–3241

    Google Scholar 

  • Uematsu M, Duce RA, Prospero JM, Chen L, Merrill JT, McDonald RL (1983) Transport of mineral aerosol from Asia over the North Pacific Ocean. J Geophys Res 88:5343–5352

    Google Scholar 

  • Venrick EL (1971) Recurrent groups of diatom species in the North Pacific. Ecology 52:614–625

    Google Scholar 

  • Venrick EL (1982) Phytoplankton in an oligotrophic ocean: observations and questions. Ecol Monogr 52:129–154

    Google Scholar 

  • Venrick EL, McGowan JA, Cayan DR, Hayward TL (1987) Climate and chlorophyll a: long-term trends in central North Pacific Ocean. Science 238:70–72

    Google Scholar 

  • Vincent WF, Neale PJ (2000) Mechanisms of UV damage to aquatic organisms. In: de Ora S, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Chap. 6. Cambridge University Press, U.K, pp 149–176

    Google Scholar 

  • Visser PM, Snelder E, Kop AJ, Boelen P, Buma AGJ, van Duyl FC (1999) Effects of UV radiation on DNA photodamage and production in bacterioplankton in the coastal Caribbean Sea. Aquat Microb Ecol 20:49–58

    Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Watanabe S, Yamamoto H, Tsunogai S (1995) Dimethyl sulphide widely varying in surface water of the eastern North Pacific. Mar Chem 512:253–259

    Google Scholar 

  • Watson AJ (1997) Volcanic iron, CO2, ocean productivity and climate. Nature 385:587–588

    Google Scholar 

  • Watson AJ, Lefèvre N (1999) The sensitivity of atmospheric CO2 concentrations to input of iron to the oceans. Tellus B 51:453–460

    Google Scholar 

  • Watson AJ, Bakker DCE, Ridgwell AJ, Boyd PW, Law CS (2000) Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407:730–733

    Google Scholar 

  • Webster PJ, Palmer TN (1997) The past and the future of El Nino. Nature 390:562-564

    Google Scholar 

  • Wells ML, Vallis GK, Silver EA (1999) Tectonic processes in Papua New Guinea and past productivity in the eastern equatorial Pacific Ocean. Nature 398:601–604

    Google Scholar 

  • Westbroek P, Brown CW, Van Bleijswijk J, Brownlee C, Brummer GJ, Conte M, Egge J, Fernandez E, Jordan R, Knapperts-busch M, Stefels J, Veldhuis M, Van der Wal P, Young J (1993) A model system approach to biological climate forcing. The example of Emiliania huxleyi. Global Planet Change 8(1–2):27–46

    Google Scholar 

  • Whitney FA, Wong CS, Boyd PW (1998) Interannual variability in nitrate supply to surface waters of the Northeast Pacific Ocean. Mar Ecol Prog Ser 170:15–23

    Google Scholar 

  • WMO (1999) Scientific assessment of ozone depletion 1998. In: Albritton DL, Aucamp PJ, Megie G, Watson RT (eds) World Meteorological Organization Global Ozone Research and Monitoring Project, Report No. 44. Geneva

    Google Scholar 

  • Wolf-Gladrow DA, Riebesell U, Burkhardt S, Bijma J (1999) Direct effects of CO2 concentration on growth and isotopic composition of marine phytoplankton. Tellus B 51:461–476

    Google Scholar 

  • Wolfe GV, Sherr EB, Sherr BF (1994) Release and consumption of DMSP from Emiliania huxleyi during grazing by Oxyrrhis marina. Mar Ecol Prog Ser 111(1–2):111–119

    Google Scholar 

  • Wolfe GV, Steinke M, Kirst GO (1997) Grazing-activated chemical defence in a unicellular marine alga. Nature 387:894–897

    Google Scholar 

  • Wolfe GV, Levasseur M, Cantin G, Michaud S (1999) Microbial consumption and production of dimethyl sulfide (DMS) in the Labrador Sea. Aquat Microb Ecol 18:197–205

    Google Scholar 

  • Wong CS, Matear RJ (1999) Sporadic silicate limitation of phytoplankton productivity in the subarctic NE Pacific. Deep-Sea Res Pt II 46:2539–2555

    Google Scholar 

  • Wood RW (1909) Note on theory of the greenhouse. Philosophy Magazine (series 6) 17:319–320

    Google Scholar 

  • Woodwell GM, Mackenzie FT, Houghton RA, Apps M, Gorham E, Davidson E (1998) Biotic feedbacks in the warming of the earth. Climatic Change 40:495–518

    Google Scholar 

  • Wu J, Boyle E, Sunda W, Wen L-S (2001) Soluble and colloidal iron in the ohgotrophic North Atlantic and North Pacific. Science 293:847–849

    Google Scholar 

  • Wuethrich B (2000) How climate change alters rhythms of the wild. Science 287:793–795

    Google Scholar 

  • Young RW, Carder KL, Betzer PR, Costello DK, Duce RA, DiTullio GR, Tindale NW, Laws EA, Uematsu M, Merrill JT, Feely RA (1991) Atmospheric iron inputs and primary productivity: phytoplankton responses in the North Pacific. Global Biogeochem Cy 5:119–134

    Google Scholar 

  • Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregle E, Steward GF, Hansen A, Karl DM (2001) Unicellular cyanobacteria fix N2 in the subtropical North Pacific ocean. Nature 412:635–638

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boyd, P.W., Doney, S.C. (2003). The Impact of Climate Change and Feedback Processes on the Ocean Carbon Cycle. In: Fasham, M.J.R. (eds) Ocean Biogeochemistry. Global Change — The IGBP Series (closed). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55844-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55844-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62691-3

  • Online ISBN: 978-3-642-55844-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics