Skip to main content

Biogeochemical Provinces: Towards a JGOFS Synthesis

  • Chapter
Ocean Biogeochemistry

Part of the book series: Global Change — The IGBP Series (closed) ((GLOBALCHANGE))

Abstract

Most people are intuitively familiar with the existenceof recognizable, bounded units of landscape with characteristic climatic regimes, land cover and animal populations — the basis of the ecosystem concept in ecology. Theophrastus (ca. 320 b.c.) documented this recognition in his ‘Inquiry into Plants’ and it is implicit much later in the writings of Thoreau, G. P. Marsh and others who by the mid-19th century already lamented the loss of the North American primeval forests (Cronon 1983). Thus we recognize particular terrestrial ecosystems: grasslands, savannas, deserts, temperate and tropical forests, polar tundra and so on. What about the ocean? To the uneducated eye of the non-sailor, the surface of nearly three quarters of the planet is largely homogeneous, with minor differences in surface roughness and color. The featureless nature of the ocean’s upper surface is especially conspicuous offshore, away from the gradients in color resulting from terrestrial sources of organic matter and resuspended sediments found in shallow waters. Do distinct marine provinces or ecosystems analogous to the familiar terrestrial biomes exist? Many (but not all) oceanographers agree that they do, and there have been many schemes to distinguish and classify them, but there is little agreement on how many should be identified and their spatial scale. Yet most of us would agree that there are distinctive, large scale ocean regimes which also support characteristic flora and fauna, and exist in the familiar climatic regions of the planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson TR, Williams PJ leB (1999) A one-dimensional model of DOC cycling in the water column incorporating combined biological-photochemical decomposition. Global Biogeochem Cy 13:337–349

    Google Scholar 

  • Archer D, Peltzer ET, Kirchman DL (1997a) A timescale for dissolved organic carbon production in equatorial Pacific surface waters. Global Biogeochem Cy 11:435–452

    Google Scholar 

  • Archer D, Aiken J, Balch W, Barber R, Dunne J, Flament P, Gardner W, Garside C, Goyet C, Johnson E, Kirchman D, McPhaden M, Newton J, Peltzer E, Welling L, White J, Yoder J (1997b) A meeting place of great ocean currents: Shipboard observations of a convergent front at 2° N in the Pacific. Deep-Sea Res Pt II 44:1827–1849

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Google Scholar 

  • Azam F, Steward GF, Smith DC, Ducklow HW (1994) Significance of bacteria in the carbon fluxes of the Arabian Sea. P Indian As-Earth 103:341–351

    Google Scholar 

  • Bailey RG (1998) Ecoregions: the ecosystem geography of the oceans and continents. Springer-Verlag, New York, 176 pp

    Google Scholar 

  • Banse K (1987) Seasonality of phytoplankton chlorophyll a in the central and northern Arabian Sea. Deep-Sea Res Pt 134:713-723

    Google Scholar 

  • Banse K (1992) Grazing, temporal changes of phytoplankton concentrations and the microbial loop in the open sea. In: Falkowski P (ed) Primary productivity and biogeochemical cycles in the sea. Plenum, New York, pp 409–440

    Google Scholar 

  • Banse K, English DC (1993) Revision of satellite-based phytoplankton pigment data from the Arabian Sea during the Northeast Monsoon. Marine Research 2:83–103

    Google Scholar 

  • Barber RT (1988) Ocean basin ecosystems. In: Alberts J, Pomeroy LR (eds) Concepts of ecosystem ecology: a comparative view. Springer-Verlag, New York, pp 171–193

    Google Scholar 

  • Barber RT, Sanderson MP, Lindley ST, Chai F, Newton J, Trees CC, Foley DG, Chavez FP (1996) Primary productivity and its regulation in the equatorial Pacific during and following the 1991–1992 El Niño. Deep-Sea Res Pt II 43:933–969

    Google Scholar 

  • Benner R, Strom S (1993) A critical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation. Mar Chem 41:153–60

    Google Scholar 

  • Benner R, Pakulski JD, McCarthy M, Hedges JI, Hatcher PG (1992) Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255:1561–1564

    Google Scholar 

  • Boyd PW, Harrison PJ (1999) Phytoplankton dynamics in the NE subarctic Pacific. Deep-Sea Res Pt II 46:2405–2432

    Google Scholar 

  • Boyd PW, Law CS (2000) The Southern Ocean Iron RElease Experiment (SOIREE) — introduction and summary. Deep-Sea Res Pt II 48:2425–2438

    Google Scholar 

  • Boyd PW, Harrison PJ, Johnson BD (1999) The Joint Global Ocean Flux Study (Canada) in the NE subarctic Pacific. Deep-Sea Res Pt II 46:2345–2350

    Google Scholar 

  • Burkill PH (1999) ARABESQUE: An overview. Deep-Sea Res Pt II 46:529–547

    Google Scholar 

  • Caperon J (1975) A trophic level ecosystem model analysis of the plankton community in a shallow-water subtropical estuarine embayment. In: Cronin LE (ed) Estuarine research, vol. 1. chemistry, biology and the estuarine system. Academic Press, New York, pp 691–709

    Google Scholar 

  • Carlson CA, Ducklow HW (1995) Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variations. Deep-Sea Res Pt II 42:639–56

    Google Scholar 

  • Carlson CA, Ducklow HW (1996) Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea. Aquat Microb Ecol 10:69–85

    Google Scholar 

  • Carlson CA, Michaels AM, Ducklow HW (1994) Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature 371:405–408

    Google Scholar 

  • Carlson CA, Ducklow HW, Sleeter TD (1996) Stocks and dynamics of bacterioplankton in the northwestern Sargasso Sea. Deep-Sea Res Pt II 43:491–516

    Google Scholar 

  • Carlson CA, Ducklow HW, Smith WO, Hansell DA (1998) Carbon dynamics during spring blooms in the Ross Sea polynya and the Sargasso Sea: Contrasts in dissolved and particulate organic carbon partitioning. Limnol Oceanogr 43:375–386

    Google Scholar 

  • Carlson CA, Hansell DA, Peltzer ET, Smith WO Jr. (2000) Stocks and dynamics of dissolved and particulate organic matter in the southern Ross Sea, Antarctica. Deep-Sea Res Pt II 47:3201–3226

    Google Scholar 

  • Caron DA (2000) Symbiosis and mixotrophy among pelagic microorganisms. In: Kirchman D (ed) Microbial ecology of the oceans. John Wiley & Sons, New York, pp 495–524

    Google Scholar 

  • Chierici M, Drange H, Anderson LG, Johannessen T (1997) Inorganic carbon fluxes through the boundaries of the Greenland Sea Basin based on in situ observations and water. J Marine Syst 22:295–309

    Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Google Scholar 

  • Cole JJ, Pace ML, Findlay S (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43:1–10

    Google Scholar 

  • Copin-Montegut C (2000) Consumption and production on scales of a few days of inorganic carbon, nitrate and oxygen by the planktonic community: results of continuous measurements at the Dyfamed Station in the northwestern Mediterranean Sea (May 1995). Deep-Sea Res Pt I 47:447–477

    Google Scholar 

  • Copin-Montegut G, Avril B (1993) Vertical distribution and temporal variation of dissolved organic carbon in the north-western Mediterranean Sea. Deep-Sea Res Pt I 40:1963–1972

    Google Scholar 

  • Cronon W (1983) Changes in the land. Indians, colonists and the ecology of New England. Hill and Wang, New York, 241 pp

    Google Scholar 

  • Gullen JJ, Franks PJS, Karl DM, Longhurst A (2002) Physical influences on marine ecosystem dynamics. In: Robinson AR, McCarthy JJ, Rothschild BJ (eds) The sea, vol. 12. John Wiley & Sons, New York, pp 297–336

    Google Scholar 

  • Giorgio PA del, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541

    Google Scholar 

  • Giorgio PA del, Cole JJ (2000) Bacterial bioenergetics and growth efficiency. In: Kirchman DL (ed) Microbial ecology of the oceans. John Wiley & Sons, New York, pp 289–326

    Google Scholar 

  • Dietrich G (1963) General oceanography, an introduction. Interscience Publishers, New York, 588 pp

    Google Scholar 

  • Ducklow H W (1999) The bacterial content of the oceanic euphotic zone. Fems Microbiol Ecol 30:1–10

    Google Scholar 

  • Ducklow HW (2000) Bacterioplankton production and biomass in the oceans. Chap. 4, In: Kirchman DL (ed) Microbial ecology of the oceans. John Wiley & Sons, New York, pp 85–120

    Google Scholar 

  • Ducklow HW, Carlson CA (1992) Oceanic bacterial productivity. Adv Microb Ecol 12:113–181

    Google Scholar 

  • Ducklow HW, Harris R (1993) Introduction to the JGOFS North Atlantic Bloom Study. Deep-Sea Res 40:1–8

    Google Scholar 

  • Ducklow HW, Kirchman DL, Quinby HL, Carlson CA, Dam HG (1993) Stocks and dynamics of bacterioplankton carbon during the spring phytoplankton bloom in the eastern North Atlantic Ocean. Deep-Sea Res Pt II 40:245–263

    Google Scholar 

  • Ducklow HW, Smith DC, Campbell L, Landry MR, Quinby HL, Steward GF, Azam F (2001a) Heterotrophic bacterioplankton distributions in the Arabian Sea: basinwide response to high primary productivity. Deep-Sea Res Pt II 48:1303–1323

    Google Scholar 

  • Ducklow HW, Carlson CA, Church M, Kirchman DL, Smith DC, Steward G (2001b) The seasonal development of bacterioplankton in the Ross Sea, Antarctica, 1994–97. Deep-Sea Res Pt II 47:3227–3247

    Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary production. Limnol Oceanogr 12:196–206

    Google Scholar 

  • Eppley RW, Ducklow HW (1986) Workshop on Upper Ocean Processes. US GOES Report 3, Woods Hole, MA. US JGOFS Planning Office, WHOI, pp 1–141

    Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Scientific, Maiden, MA, 375 pp

    Google Scholar 

  • Falkowski PG, Laws EA, Barber RT, Murray JW (2003) Phytoplankton and their role in primary, new, and export production, (this volume)

    Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski PG (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–24

    Google Scholar 

  • Frost BW (1987) Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp. Mar Ecol Prog Ser 39:49–68

    Google Scholar 

  • Fuhrman J (2000) Impact of viruses on microbial processes. In: Kirchman D (ed) Microbial ecology of the oceans. John Wiley & Sons, New York, pp 327–351

    Google Scholar 

  • Gaillard JF, Tréguer P (eds) (1997) Antares I: France-JGOFS in the Indian sector of the Southern Ocean; benthic and water column processes. Deep-Sea Res Pt II 44:951–1176

    Google Scholar 

  • Giovannoni SJ, Rappe M (2000) Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the oceans. John Wiley & Sons, New York, pp 47–84

    Google Scholar 

  • Hansell DA, Carlson CA (1998a) Deep-ocean gradients in the concentration of dissolved organic carbon. Nature 395:263–266

    Google Scholar 

  • Hansell DA, Carlson CA (1998b) Net community production of dissolved organic carbon. Global Biogeochem Cy 12:443–453

    Google Scholar 

  • Hansell DA, Carlson CA, Bates NR, Poisson A (1997) Horizontal and vertical removal of organic carbon in the equatorial Pacific Ocean: a mass balance assessment. Deep-Sea Res Pt II 44:2115–2130

    Google Scholar 

  • Harris RP, Boyd P, Harbour DS, Head RN, Pingree RD, Pomroy AJ (1997) Physical, chemical and biological features of a cyclonic eddy in the region of 61° 10′ N 19° 50′ W in the North Atlantic. Deep-Sea Res Pt I 44:1815–1839

    Google Scholar 

  • Harrison WG (1980) Nutrient regeneration and primary production in the sea. In: Falkowski PG (ed) Primary productivity in the sea. Plenum Publishing Co, pp 433–60

    Google Scholar 

  • Harrison WG, Head EJH, Home EPW, Irwin B, Li WKW, Longhurst AR, Paranjape MA, Piatt T (1993) The Western North Atlantic Bloom Experiment. Deep-Sea Res Pt II 40:279–306

    Google Scholar 

  • Harrison WG, Aristegui J, Head EJH, Li WKW, Longhurst AR, Sameoto DD (2001) Basin-scale variability in plankton biomass and community metabolism in the sub-tropical North Atlantic Ocean. Deep-Sea Res Pt II 48:2241–2270

    Google Scholar 

  • Hedges J, Farrington J (1993) Measurement of dissolved organic carbon and nitrogen in natural waters: workshop report. Mar Chem 41:5–10

    Google Scholar 

  • Hu D, Tsunogai S (1999) Margin fluxes in the East China Sea. China Ocean Press, Beijing, 247 pp

    Google Scholar 

  • Jarre-Teichmann A, Shannon LJ, Moloney CL, Wickens PA (1998) Comparing trophic flows in the southern Benguela to those in other upwelling ecosystems. S Afr J Marine Sci 19:391–414

    Google Scholar 

  • Johnson PW, Sieburth JMcN (1979) Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24:928–35

    Google Scholar 

  • Kähler P, Bjørnsen PK, Lochte K, Antia A (1997) Dissolved organic matter and its utilization by bacteria during spring in the Southern Ocean. Deep-Sea Res Pt II 44:341–353

    Google Scholar 

  • Karl DM (1999) A sea of change: biogeochemical variability in the North Pacific subtropical gyre. Ecosystems 2:181–214

    Google Scholar 

  • Karl DM, Lukas R (1996) The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep-Sea Res Pt II 43:129–156

    Google Scholar 

  • Karl DM, Michaels AF (1996) Preface: The Hawaii Ocean Time Series (HOT) and the Bermuda Atlantic Time Series (BATS). Deep-Sea Res Pt II 43:127–129

    Google Scholar 

  • Karl DM, Christian JR, Dore JE, Hebel DV, Letelier RM, Tupas LM, Winn CD (1996) Seasonal and interannual variability in primary production and particle flux at Station ALOHA. Deep-Sea Res Pt II 43:539–56

    Google Scholar 

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409: 507–510

    Google Scholar 

  • Kirchman DL, Keil RG, Simon M, Welschmeyer NA (1993) Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific. Deep-Sea Res 40:967–988

    Google Scholar 

  • Knap A, Michaels A, Close A, Ducklow HW, Dickson A (eds) (1996) Protocols for the Joint Global Ocean Flux Study (JGOFS) cormeasurements. JGOFS Report No. (19, vi-1-170 pp Reprint of the IOC Manuals and Guides No. 29, UNESCO 1994

    Google Scholar 

  • Kumar MD, Rajendran A, Somasundar K, Haake B, Jenisch A, Shuo Z, Ittekkot V, Desai BN (1990) Dynamics of dissolved organic carbon in the northwestern Indian Ocean. Mar Chem 31:299–316

    Google Scholar 

  • Lai D (1994) Biogeochemistry of the Arabian Sea. Reprinted from P Indian As-Earth 103:99–352

    Google Scholar 

  • Landry MR, Barber RT, Bidigare RR, Chai F, Coale KH, Dam HG, Lewis MR, Lindley ST, McCarthy JJ, Roman MR, Stoecker DK, Verity PG, White JR (1997) Iron and grazing constraints on primary production in the central equatorial Pacific: An EqPac synthesis. Limnol Oceanogr 42:405–418

    Google Scholar 

  • Laws EA, Falkowski PG, Smith WO, Ducklow HW Jr., McCarthy JJ (2000) Temperature effects on export production in the open ocean. Global Biogeochem Cy 14:1231–1246

    Google Scholar 

  • Le Fèvre J, Tréguer P (1998) Special issue: carbon fluxes, dynamic processes in the Southern Ocean: present, past. J Marine Syst 17:1–4

    Google Scholar 

  • Letelier RM, Karl DM (1996) The role of Trichodesmium spp. in the productivity of the subtropical North Pacific Ocean. Mar Ecol Prog Ser 133:263–273

    Google Scholar 

  • Letelier RM, Karl DM (1998) Trichodesmium spp. physiology and nutrient fluxes in the North Pacific subtropical gyre. Aquat Microb Ecol 15:265–276

    Google Scholar 

  • Li WKW, Subba Rao DV, Harrison WG, Smith JC, Gullen JJ, Irwin B, Piatt T (1982) Autotrophic picoplankton in the tropical ocean. Science 219:292–95

    Google Scholar 

  • Longhurst AR (1995) Seasonal cycles of pelagic production and consumption. Prog Oceanogr 36:77–167

    Google Scholar 

  • Longhurst AR (1998) Ecological geography of the sea. Academic, San Diego, 398 pp

    Google Scholar 

  • Longhurst AR, Sathyendranath S, Piatt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271

    Google Scholar 

  • Malone TC (1980) Size-fractionated primary productivity of marine phytoplankton. In: Falkowski PG (ed) Primary productivity in the sea. Plenum Publishing Co., pp 301–319

    Google Scholar 

  • Margalef R (1978) Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1:493–509

    Google Scholar 

  • McGillicuddy DJ Jr., Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickey TD, McNeil J, Michaels AF, Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394:263–265

    Google Scholar 

  • Michaels AF, Knap AH (1996) Overview of the U.S. JGOFS Bermuda Atlantic Time-series Study and the Hydrostation S Program. Deep-Sea Res Pt II 43:157–198

    Google Scholar 

  • Monaco A, Biscaye PE, Laborde P (1999) France-JGOFS/ECOMARGE: The ECOFER (ECOsystem du Canyon du Cap FERret) Experiment on the Northeast Atlantic Continental Margin. Deep-Sea Res Pt II 46:1944–2379

    Google Scholar 

  • Moran MA, Zepp RG (2000) UV radiation effects on microbes and microbial processes. In: Kirchman DL (ed) Microbial ecology of the oceans. John Wiley & Sons, New York, pp 201–228

    Google Scholar 

  • Morel A (1996) An ocean flux study in eutrophic, mesotrophic, and oligotrophic situations: the EUMELI program. Deep-Sea Res Pt I 43:1185–1190

    Google Scholar 

  • Murray JW, Barber RT, Roman M, Bacon MP, Feely RA (1994) Physical and biological controls on carbon cycling in the equatorial pacific. Science 266:58–65

    Google Scholar 

  • Nagata T (2000) Production mechanisms of dissolved organic matter. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 121–152

    Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262-270

    Google Scholar 

  • Peltzer E, Hayward N (1996) Spatial distribution and temporal variability of total organic carbon along 140° W in the Equatorial Pacific Ocean in 1992. Deep-Sea Res Pt II 43:1155–1180

    Google Scholar 

  • Pfannkuche O, Lochte K (eds) (2001) Biogeochemistry of the deep Arabian Sea: German research programmes in the Arabian Sea. Deep-Sea Res Pt II 47:2615–3072

    Google Scholar 

  • Piatt T, Sathyendranath S (1988) Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241:1613–1622

    Google Scholar 

  • Piatt T, Sathyendranath S (1999) Spatial structure of pelagic ecosystem processes in the global ocean. Ecosystems 2:384–394

    Google Scholar 

  • Piatt T, Caverhill C, Sathyendranath S (1991) Basin-scale estimates of oceanic primary production by remote sensing: the North Atlantic. J Geophys Res 96:147–159

    Google Scholar 

  • Pomeroy LR (1974) The ocean’s food web, a changing paradigm. Bioscience 24:499–504

    Google Scholar 

  • Pomroy A, Joint I (1999) Bacterioplankton activity in the surface waters of the Arabian Sea during and after the 1994 SW Monsoon. Deep-Sea Res Pt II 46:767–794

    Google Scholar 

  • Pondaven P, Ruiz-Pino D, Fravalo C, Tréguer P, Jeandel C (2000) Interannual variability of Si and N cycles at the time-series station KERFIX between 1990 and 1995 — a 1-D modeling study. Deep-Sea Res Pt I 47:223–257

    Google Scholar 

  • Rich J, Gosselin M, Sherr E, Sherr B, Kirchman DL (1998) High bacterial production, uptake and concentrations of dissolved organic matter in the central Arctic Ocean. Deep-Sea Res Pt II 44:1645–1663

    Google Scholar 

  • Roy S, Sundby B (2000) A Canadian JGOFS Process Study in the Gulf of St. Lawrence (Canada): carbon transformations from production to burial. Deep-Sea Res Pt II 47:385–760

    Google Scholar 

  • Sarmiento JL, Slater RD, Fasham MJR, Ducklow HW, Toggweiler JR, Evans GT (1993) A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone. Global Biogeochem Cy 7:417–450

    Google Scholar 

  • Sathyendranath S, Longhurst AR, Caverhill CM, Piatt T (1995) Regionally and seasonally differentiated primary production in the North Atlantic. Deep-Sea Res Pt I 42:1773–1802

    Google Scholar 

  • Savenkoff C, Lefevre D, Denis M, Lambert CE (1993) How do microbial communities keep living in the Mediterranean outflow within N.E.Atlantic intermediate waters? Deep-Sea Res 40:627–641

    Google Scholar 

  • SCOR (1990) JGOFS science plan. JGOFS Report No. 5. Halifax NS: SCOR and JGOFS Sharp JH, Suzuki Y, Munday WL (1993) A comparison of dissolved organic carbon in North Atlantic Ocean nearshore waters by high temperature combustion and wet chemical oxidation. Mar Chem 41:253–259

    Google Scholar 

  • Sherr E, Sherr B (2000) Marine microbes: an overview. In: Kirchman DL (ed) Microbial ecology of the oceans. John Wiley & Sons, New York, pp 13–46

    Google Scholar 

  • Sherry ND, Boyd PW, Sugimoto K, Harrison PJ (1999) Seasonal and spatial patterns of heterotrophic bacterial production, respiration, and biomass in the subarctic NE Pacific. Deep-Sea Res Pt II 46:2557–2578

    Google Scholar 

  • Sieburth JMcN, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263

    Google Scholar 

  • Smetacek V, De Baar HJW, Bathmann UV, Lochte K, Van Der Loeff MM Rutgers (1997) Ecology and biogeochemistry of the Antarctic Circumpolar Current during austral spring: a summary of Southern Ocean JGOFS cruise ANT X/6 of R.V. Polarstern. Deep-Sea Res Pt II 44:1–21

    Google Scholar 

  • Smith SL (1998) The 1994-1996 Arabian Sea Expedition: oceanic response to monsoonal forcing. Part I. Deep-Sea Res Pt II 45:1917–2501

    Google Scholar 

  • Smith WO Jr., Anderson RF, Moore JK, Codispoti LA, Morrison JM (2000a) The U.S. Southern Ocean Joint Global Ocean Flux Study: an introduction to AESOPS. Deep-Sea Res Pt II 47:3073–3093

    Google Scholar 

  • Smith WO Jr., Marra J, Hiscock MR, Barber RT (2000b) The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Res Pt II 47:3119–3140

    Google Scholar 

  • Strom SL, Miller CB, Frost BW (2000) What sets lower limits to phytoplankton stocks in high-nitrate, low-chlorophyll regions of the open ocean? Mar Ecol Prog Ser 193:19–31

    Google Scholar 

  • Sugimura Y, Suzuki Y (1988) A high-temperature catalytic oxidation method of non-volatile dissolved organic carbon in seawater by direct injection of liquid samples. Mar Chem 14:105–131

    Google Scholar 

  • Sverdrup HU (1953) On the conditions for the vernal blooming of phytoplankton. J Cons Perm Int Explor Mer 18:287–295

    Google Scholar 

  • Tindale NW, Pease PP (1999) Aerosols over the Arabian Sea: Atmospheric transport pathways and concentrations of dust and sea salt. Deep-Sea Res Pt II 46:1577–1595

    Google Scholar 

  • Tomczak M, Godfrey JS (1994) Regional oceanography: an introduction. Pergamon, Oxford, 422 p

    Google Scholar 

  • Tsunogai S (1997) Biogeochemical processes in the North Pacific. Proceedings of the International Marine Science Symposium held on 12–14 November 1996 at Mutsu, Aomori, Japan. Tokyo: Japan Marine Science Foundation

    Google Scholar 

  • Turner D, Owens N, Priddle J (1995) Southern Ocean JGOFS: The U.K.‘STERNA’ study in the Bellingshausen Sea. Deep-Sea Res Pt II 42:905–906

    Google Scholar 

  • Van der Spoel J, Heymann RP (1983) A comparative atlas of Zooplankton. Springer-Verlag, Berlin

    Google Scholar 

  • Walsh JJ (1976) Herbivory as a factor in patterns of nutrient utilization in the sea. Limnol Oceanogr 21:1–13

    Google Scholar 

  • Waterbury JB, Watson SW, Guillard RR, Brand LE (1979) Wide- spread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 277:392–394

    Google Scholar 

  • Welschmeyer N, Strom SL, Goericke R, diTullio G, Belvin M, Peterson W (1993) Primary production in the subarctic Pacific Ocean: project SUPER. Prog Oceanogr 32:101–135

    Google Scholar 

  • Wiebinga CJ, Veldhuis MJW, De Baar HJW (1997) Abundance and productivity of bacterioplankton in relation to seasonal upwelling in the northwest Indian Ocean. Deep-Sea Res Pt I 44:451-476

    Google Scholar 

  • Williams PJ leB (1981) Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforschung 5:1–28

    Google Scholar 

  • Williams PJ leB (1984) Bacterial production in the marine food chain: the emperor’s new suit of clothes? In: Fasham M (ed) Flows of energy and materials in marine ecosystems: theory and practice. Plenum Press, pp 271–299

    Google Scholar 

  • Williams PJ leB (2000) Heterotrophic bacterial and the dynamics of dissolved organic material In: Kirchman DL (ed) Microbial ecology of the oceans. John Wiley & Sons, New York, pp 153–201

    Google Scholar 

  • Winn CD, Campbell L, Letelier R, Hebel D, Fujieki L, Karl DM (1995) Seasonal variability in chlorophyll concentrations in the North Pacific subtropical gyre. Global Biogeochem Cy 9:605–620

    Google Scholar 

  • Wong GTF, Chao S-Y, Li Y-H, Shiah F-K (2000) The Kuroshio edge exchange processes (KEEP) study — an introduction to hypotheses and highlights. Cont Shelf Res 20:335–347

    Google Scholar 

  • Wu J, Sunda W, Boyle EA, Karl DM (2000) Phosphate depletion in the Western North Atlantic Ocean. Science 289:759–762

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ducklow, H.W. (2003). Biogeochemical Provinces: Towards a JGOFS Synthesis. In: Fasham, M.J.R. (eds) Ocean Biogeochemistry. Global Change — The IGBP Series (closed). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55844-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55844-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62691-3

  • Online ISBN: 978-3-642-55844-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics