Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 153))

Abstract

All artificial bodies and all minerals have superposable images. Opposed to these are nearly all organic substances which play an important role in plant and animal life. These are asymmetric, and indeed have the kind of asymmetry in which the image is not superposable with the object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott G, Sesti F, Splawski I, Buck M, Lehmann, Timothy K, Keating M, Goldstein S (1999) MirPl forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97:175–187

    PubMed  CAS  Google Scholar 

  • Ã…berg G (1972) Toxicological and local anesthetic effects of optically active isomers of two local anesthetic compounds. Acta Pharmacol Toxicol 31:273–286

    Google Scholar 

  • Ariëns E (1993) Nonchiral, homochiral and composite chiral drugs. Trends Pharmacol Sci 14:68–75

    PubMed  Google Scholar 

  • Armstrong C, Bezanilla F, Rojas E (1974) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol 62:375–391

    Google Scholar 

  • Armstrong C, Hille B (1998) Voltage-gated ion channels and electrical excitability Neuron 20:371–380

    PubMed  CAS  Google Scholar 

  • Ashcroft F (1999) Ion Channels and Disease. Academic Press, San Diego

    Google Scholar 

  • Bennett P, Valenzuela C, Chen L-Q, Kallen R (1995) On the molecular nature of the lidocaine receptor of cardiac Na+ channels: Modification of block by alterations in the α-subunit III-IV interdomain. Circ Res 77:584–592

    PubMed  CAS  Google Scholar 

  • Betz H (1990) Ligand-gated ion channels in the brain: The amino acid receptor superfamily. Neuron 5:383–392

    PubMed  CAS  Google Scholar 

  • Bezanilla F, Armstrong C (1977) Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol 70:549–596

    PubMed  CAS  Google Scholar 

  • Bezanilla F, Stefani E (1998) Gating currents. Methods Enzymol 293:331–352

    PubMed  CAS  Google Scholar 

  • Bosch R, Gaspo R, Busch A, Lang H, Li G-R, Nattel S (1998) Effects of chromanol 293B, a selective blocker of the slow, component of the delayed rectifier K+ current, on repolarization in human and guinea pig ventricular myocytes. Cardiovasc Res 38:441–450

    PubMed  CAS  Google Scholar 

  • Brown G (1986) 3H-batrachotoxinin-A benzoate binding to voltage-sensitive sodium channels: inhibition by the channel blockers tetrodotoxin and saxitoxin. J Neurosci 6:2065–2070

    Google Scholar 

  • Carmeliet E, Mugbawa K (1998) Antiarrhythmic drugs and cardiac ion channels: mechanisms of action. Prog Biophys Mol Biol 70:1–72

    PubMed  CAS  Google Scholar 

  • Catterall W (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol 20:15–43

    PubMed  CAS  Google Scholar 

  • Catterall W (1988) Structure and function of voltage-sensitive ion channels. Science 242:50–61

    PubMed  CAS  Google Scholar 

  • Catterall W (1994) Molecular properties of a superfamily of plasma-membrane cation channels. Curr Opin Cell Biol 6:607–615

    PubMed  CAS  Google Scholar 

  • Chandy K, Gutman G, Grissmer S (1993) Physiological role, molecular structure and evolutionary relationships of voltage-gated potassium channels in T lymphocytes. Sem Neurosci 5:125–134

    CAS  Google Scholar 

  • Choi K, Mossman C, Aube J, Yellen G (1993) The internal quaternary ammonium receptor site of Shaker potassium channels. Neuron 10:533–541

    PubMed  CAS  Google Scholar 

  • Clarkson C (1989) Stereoselective block of cardiac sodium channels by RAC109 in single guinea-pig ventricular myocytes. Circ Res 65:1306–1323

    PubMed  CAS  Google Scholar 

  • Curran M, Splawski I, Timothy K, Vincent G, Green E, Keating M (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80:795–803

    PubMed  CAS  Google Scholar 

  • Curtis B, Catterall W (1984) Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 23:2113–2118

    PubMed  CAS  Google Scholar 

  • Daly J, Myers C, Warnick J (1980) Levels of batrachotoxin and lack of sensitivity to its action in poison-dart frogs (Phyllobates). Science 208:1383–1385

    PubMed  CAS  Google Scholar 

  • Deal K, England S,T amkun M (1996) Molecular physiology of cardiac potassium channels. Physiol Rev 76:49–76

    PubMed  CAS  Google Scholar 

  • DeLeon M, Wang Y, Jones L, Pérez-Reyes E, Wei X, Soong T, Snutch T, Yue D (1995) Essential Ca2+-binding motif for Ca2+-sensitive inactivation of L-type Ca2+ channels. Science 270:1502–1506

    CAS  Google Scholar 

  • Del Camino D, Holmgren M, Liu Y, Yellen G (2000) Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature 403:321–325

    PubMed  Google Scholar 

  • Delpón E, Valenzuela C, Pérez O, Casis O, Tamargo J (1995) Propafenone preferentially blocks the rapidly activating component of delayed rectifier K+ current in guinea pig ventricular myocytes. Voltage-independent and time-dependent block of the slowly activating component. Circ Res 76:223–235

    PubMed  Google Scholar 

  • Delpón E, Valenzuela C, Pérez O, Franqueza L, Gay P, Snyders D, Tamargo J (1996) Mechanisms of block of a human cloned potassium channel by the enantiomers of a new bradycardic agent: 5-16257-2 and 5-16260-2. Br J Pharmacol 117:1293–1301

    PubMed  Google Scholar 

  • Diochot S, Richard S, Baldy-Moulinier M, Nargeot J, Valmier J (1995) Dihydropyridines, phenylalkylamines and benzodiazepines block N-, P/Q-and R-type calcium currents. Pflügers Arch 431:10–19

    PubMed  CAS  Google Scholar 

  • Dolly J, Parcej D (1996) Molecular properties of voltage-gated K+ channels. J Bioenerg Biomembr 28:231–253

    PubMed  CAS  Google Scholar 

  • Doyle D, Cabrai J, Pfuetzner R, Kuo A, Gulbis J, Cohen S, Chait B, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    PubMed  CAS  Google Scholar 

  • Ficker E, Jarolimek W, Kiehn J, Baumann A, Brown A (1998) Molecular determinants of dofetilide block of HERG K+ channels. Circ Res 82:386–395

    PubMed  CAS  Google Scholar 

  • Floyd D, Kimball S, Krapcho J, Das J, Turk C (1992) Benzazepinone calcium channel blockers. 2. Structure-activity and drug metabolism studies leading to potent antihypertensive agents. Comparison with benzothiazepinones. J Med Chem 35:756–772

    PubMed  CAS  Google Scholar 

  • Franks N, Lieb W (1994) Stereospecific effects of inhalation general anesthetic optical isomers on nerve ion channels. Science 254:427–430

    Google Scholar 

  • Franqueza L, Longobardo M, Vicente J, Delpón E, Tamkun M, Tamargo J, Snyders, Valenzuela C (1997) Molecular determinants of stereoselective bupivacaine block of hKvl.5 channels. Circ Res 81:1053–1064

    PubMed  CAS  Google Scholar 

  • Franqueza L, Valenzuela C, Delpón E, Longobardo M, Caballero R, Tamargo J (1998) Effects of propafenone and 5-hydroxy-propafenone on hKvl.5 channels. Br J Pharmacol 125:969–978

    PubMed  CAS  Google Scholar 

  • Franqueza L, Valenzuela C, Eck J, Tamkun M, Tamargo J, Snyders D (1999) Functional expression of an inactivating potassium channel (Kv4.3) in a mammalian cell line. Cardiovasc Res 41:212–219

    PubMed  CAS  Google Scholar 

  • Galper J, Catterall W (1979) Inhibition of sodium channels by D600. Mol Pharmacol 15:174–178

    PubMed  CAS  Google Scholar 

  • Gödicke J, Herzig S, Mescheder A, Steinke F (1992) Enantioselectivity of asocainol studied at different conditions: a novel approach to check the feasibility of molecular models of antiarrhythmic action. Naunyn-Schmiedeberg’s Arch Pharmacol 346:345–351

    Google Scholar 

  • Gomez-Lagunas F, Armstrong C (1995) Inactivation in ShakerB K+ channels: a test for the number of inactivating particles on each channel. Biophys J 68:89–95

    PubMed  CAS  Google Scholar 

  • González T, Longobardo M, Caballero R, Delpón E, Sinisterra JV, Tamargo J, Valenzuela C (2001) Stereoselective effects of the enantiomers of a new local anesthetic, IQB-9302, on a human cardiac potassium channel (Kvl.5). Br J Pharmacol 132:385–392

    PubMed  Google Scholar 

  • Gristwood R, Bardsley H, Baker H, Dickens J (1994) Reduced cardiotoxicity of levobupivacaine compared with racemic bupivacaine (Marcaine): new clinical evidence. Exp Opin Invest Drugs 3:1209–1212

    Google Scholar 

  • Gulbis J, Mann S, MacKinnon R (1999) Structure of a voltage-dependent K+ channel β subunit. Cell 97:943–952

    PubMed  CAS  Google Scholar 

  • Hamill O, Marty A, Neher E, Sakmann B, Sigworth F (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv Eur J Physiol 391:85–100

    CAS  Google Scholar 

  • Hartmann H, Tiedeman A, Chen S, Brown A, Kirsch G (1994) Effects of III-IV linker mutations on human heart Na+ channel inactivation gating. Circ Res 75:114–122

    PubMed  CAS  Google Scholar 

  • Heinemann S, Terlau H, Stühmer W, Imoto K, Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356: 441–443

    PubMed  CAS  Google Scholar 

  • Heginbotham L, Abramson T, MacKinnon R (1992) A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 258:1152–1155

    PubMed  CAS  Google Scholar 

  • Hering S, Savchenko A, Strubing C, Lakitsch M, Striessnig J (1993) Extracellular localization of the benzothiazepine binding domain of L-type Ca2+ channels. Mol Pharmacol 43:820–826

    PubMed  CAS  Google Scholar 

  • Herlitze S, Hockerman G, Scheuer T, Catterall W (1997) Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel alpha 1A subunit. Proc Natl Acad Sci USA 94:1512–1516

    PubMed  CAS  Google Scholar 

  • Hille B (1977) Local anesthetics: Hydrophilic and hydrophobic pathways for the drugreceptor reaction. J Gen Physiol 69:497–515

    PubMed  CAS  Google Scholar 

  • Hille B (1992) Ionic Channels of Excitable Membranes. Second edition. Sinauer Associates Inc., Sunderland, MA, USA

    Google Scholar 

  • Hockerman G, Johnson B, Scheuer T, Catterall W (1995) Molecular determinants of high affinity phenylalkylamine block of L-type calcium channels. J Biol Chem 270:22119–22122

    PubMed  CAS  Google Scholar 

  • Hockerman G, Peterson B, Johnson B, Catterall W (1997a). Molecular determinants of drug binding and action on L-type calcium channels. Annu Rev Pharmacol Toxicol 37:361–396

    PubMed  CAS  Google Scholar 

  • Hockerman G, Peterson B, Sharp E, Tañada T, Sheuer T, Catterall W (1997b) Construction of a high-affinity receptor site for dihydropyridine agonists and antagonists by single amino acid substitutions in a non-L-type Ca2+ channel. Proc Natl Acad Sci USA 94.T4906–14911

    Google Scholar 

  • Hockerman G, Johnson B, Abbott M, Scheuer T, Catterall W (1997c) Molecular determinants of high affinity phenylalkylamine block of L-type calcium channels in transmembrane segment IIIS6 and the pore region of the alphal subunit. J Biol Chem 272:18759–18765

    PubMed  CAS  Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond.) 117:500–544

    CAS  Google Scholar 

  • Hondeghem L, Katzung B (1977) Time-and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta 472:373–398

    PubMed  CAS  Google Scholar 

  • Hoshi T, Zagotta W, Aldrich R (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538

    PubMed  CAS  Google Scholar 

  • Hoshi T, Zagotta W, Aldrich R (1991) Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7:547–556

    PubMed  CAS  Google Scholar 

  • Isacoff E, Jan Y, Jan L (1991) Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel. Nature 353:86–90

    PubMed  CAS  Google Scholar 

  • Kallen R, Cohen S, Barchi R (1993) Structure, function and expression of voltagedependent sodium channels. Mol Neurobiol 7:383–428

    PubMed  CAS  Google Scholar 

  • Kohlhardt M, Fröbe U, Herzig J (1986) Modification of single cardiac Na+ channels by DPI 201-106. J Membr Biol 89:163–172

    PubMed  CAS  Google Scholar 

  • Kohlhardt M, Fichtner H (1988) Inhibitory effects of diprafenone stereoenantiomers on cardiac Na+ channels. Eur J Pharmacol 156:55–62

    PubMed  CAS  Google Scholar 

  • Linford N, Cantrell A, Qu Y, Sheuer T, Catterall W (1998) Interaction of batrachotoxin with the local anesthetic receptor site in transmembrane segment IVS6 of the voltage-gated sodium channel. Proc Natl Acad Sci USA 95:13947–13952

    PubMed  CAS  Google Scholar 

  • Longobardo M, Delpón E, Caballero R, Tamargo J, Valenzuela C (1998) Structural determinants of potency and stereoselective block of hKvl.5 channels induced by local anesthetics. Mol Pharmacol 54:162–169

    PubMed  CAS  Google Scholar 

  • Loussouarn G, Charpentier F, Mohammad-Panah R, Kunzelmann K, Baró I, Escande D (1997) KvLQTl potassium channel but not IsK is the molecular target for trans-6-cyano-4-(N-ethylsulfonyl-N-methylamino)-3-hydroxy-2,2-dimethyl-chromane. Mol Pharmacol 52:1131–1136

    PubMed  CAS  Google Scholar 

  • Luduena F, Bogado E, Tullar B (1972) Optical isomers of mepivacaine and bupivacaine. Archiv Int Pharmacodyn Ther 200:359–369

    CAS  Google Scholar 

  • MacKinnon R (1991) Determination of the subunit stoichiometry of a voltageactivated K channel. Nature 350:232–235

    PubMed  CAS  Google Scholar 

  • Mannuzzu L, Moronne M, Isacoff E (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271:213–216

    PubMed  CAS  Google Scholar 

  • McDonald T, Peltzer S, Trautwein W, Peltzer D (1994) Regulation and modulation of calcium channels in cardiac, skeletal and smooth muscle cells. Physiol Rev 74: 365–507

    PubMed  CAS  Google Scholar 

  • Mitterdorfer J, Wang Z, Sinnegger M, Hering S, Striessnig J, Grabner M, Glossmann H (1996) Two amino acid residues in the IIIS5 segment of L-type calcium channels differentially contribute to 1,4-dihydropyridine sensitivity. J Biol Chem 271: 30330–30335

    PubMed  CAS  Google Scholar 

  • Nau C, Wang S-Y, Strichartz G, Wang G (1999a) Point mutations at N434 in D1-S6 of ?l Na+ channels modulate binding affinity and stereoselectivity of local anesthetic enantiomers. Mol Pharmacol 56:404–413

    PubMed  CAS  Google Scholar 

  • Nau C, Vogel W, Hempelmann G, Bräu M (1999b) Stereoselectivity of bupivacaine in local anesthetic-sensitive ion channels of peripheral nerve. Anesthesiology 91:786–795

    PubMed  CAS  Google Scholar 

  • Noda M, Shimuzi S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N, Kangawa K, Matsuo H, Raftery M, Hirose T, Inayama S, Hayashida H, Miyata T, Numa S (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    PubMed  CAS  Google Scholar 

  • Norris S, King A (1997) The stereo-isomers of the anticonvulsant ARL 12495AA limit sustained repetitive and modify action potential properties of rat hippocampal neurons in Vitro. J Pharmacol Exp Ther 281:1191–1198

    PubMed  CAS  Google Scholar 

  • Papazian D, Schwarz T, Tempel B, Jan Y, Jan L (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channels gene from Drosophila. Science 237:749–753

    PubMed  CAS  Google Scholar 

  • Papazian D, Timpe L, Jan Y, Jan L (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349:305–310

    PubMed  CAS  Google Scholar 

  • Patton D, West J, Catterall W, Goldin A (1992) Amino acid residues required for fast Na+-channel inactivation: charge neutralization and deletions in the III-IV linker. Proc Natl Acad Sci USA 89:10905–10909

    PubMed  CAS  Google Scholar 

  • Peterson B, Johnson B, Hockerman G, Acheson M, Scheuer T, Catterall W (1997) Analysis of the dihydropyridine receptor site of L-type calcium channels by alanine-scanning mutagenesis. J Biol Chem 272:18752–18758

    PubMed  CAS  Google Scholar 

  • Peterson B, DeMaria C, Yue D (1999) Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22:549–558

    PubMed  CAS  Google Scholar 

  • Qu Y, Rogers J, Tanada T, Scheuer T, Catterall W (1995) Molecular determinants of drug access to the receptor site for antiarrhythmic drugs in the cardiac Na+ channel. Proc Natl Acad Sci USA 92:11839–11843

    PubMed  CAS  Google Scholar 

  • Ragsdale D, McPhee J, Scheuer T, Catterall W (1994) Molecular determinants of statedependent block of Na+ channels by local anesthetics. Science 265:1724–1728

    PubMed  CAS  Google Scholar 

  • Ragsdale D, McPhee J, Scheuer T, Catterall W (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci USA 93:9270–9275

    PubMed  CAS  Google Scholar 

  • Rampe D, Wible B, Fedida D, Dage R, Brown A (1993) Verapamil blocks a rapidly activating delayed rectifier K+ channel cloned from human heart. Mol Pharmacol 44:642–648

    PubMed  CAS  Google Scholar 

  • Rauer H, Grissmer S (1999) The effect of deep pore mutations on the action of phenylalkylamines on the Kvl.3 channel. Br J Pharmacol 127:1065–1074

    PubMed  CAS  Google Scholar 

  • Roden D (1993) Current status of class III antiarrhythmic drug therapy. Am J Cardiol 72:44B–49B

    PubMed  CAS  Google Scholar 

  • Roden D, George A (1997) Structure and function of cardiac sodium and potassium channels. Am J Physiol 273:H511–H525

    PubMed  CAS  Google Scholar 

  • Rogawski M, Porter R (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42:223–286

    PubMed  CAS  Google Scholar 

  • Romey G, Quast U, Pauron D, Frelin C, Renaud J, Lazdunski M (1987) Na+ channels as sites of action of the cardioactive agent DPI 201-106 with agonist and antagonist enantiomers. Proc Natl Acad Sci USA 84:896–900

    PubMed  CAS  Google Scholar 

  • Salata J, Jurkiewicz N, Wang J, Evans B, Orme H, Sanguinetti M (1998) A novel benzodiazepine that activates cardiac slow delayed rectifier K+ currents. Mol Pharmacol 54:220–230

    PubMed  CAS  Google Scholar 

  • Sanguinetti M, Jurkiewicz N (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215

    PubMed  CAS  Google Scholar 

  • Sanguinetti M, Curran M, Spector P, Zou A, Shen J, Atkinson D, Keating M (1996) Coassembly of KvLQTl and minK (IsK) to form cardiac IKs potassium channel. Nature 384:80–83

    PubMed  CAS  Google Scholar 

  • Seino S, Chen L, Seino M, Blondel O, Takeda J, Johnson J, Bell G (1992) Cloning of the alpha 1 subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells. Proc Natl Acad Sci USA 89:584–588

    PubMed  CAS  Google Scholar 

  • Singh B, Courtney K (1990) The classification of antiarrhythmic mechanisms of drug action: experimental and clinical consideration. In: Zipes D, Jalife J (eds) Cardiac Electrophysiology: From Cell to Bedside. WB Saunders, Philadelphia, pp 882–897

    Google Scholar 

  • Smallwood J, Robertson D, Steinberg M (1989) Electrophysiological effects of flecainide enantiomers in canine Purkinje fibres. Naunyn-Schmiedeberg’s Arch Pharmacol 339:625–629

    CAS  Google Scholar 

  • Snyders D, Hondeghem L (1990) Effects of quinidine on the sodium current of ventricular guinea-pig myocytes: evidence for a drug-associated rested state with altered kinetics. Circ Res 66:565–579

    PubMed  CAS  Google Scholar 

  • Snyders D, Knoth K, Roberds S, Tamkun M (1992) Time-, voltage-, and statedependent block by quinidine of a cloned human cardiac potassium channel. Mol Pharmacol 41:322–330

    PubMed  CAS  Google Scholar 

  • Snyders D, Yeola S (1995) Determinants of antiarrhythmic drug action. Electrostatic and hydrophobic components of block of the human cardiac hKvl.5 channel. Circ Res 77:575–583

    PubMed  CAS  Google Scholar 

  • Snyders D (1999) Structure and function of cardiac potassium channels. Cardiovasc Res 42:377–390

    PubMed  CAS  Google Scholar 

  • Strichartz G (1987) Local Anesthetics. Handbook of Experimental Pharmacology. Vol 81. Springer-Verlag, Berlin

    Google Scholar 

  • Striessnig J, Grabner M, Mitterdorfer J, Hering S, Sinnegger M, Glossmann H (1998) Structural basis of drug binding to L Ca2+ channels. Trend Pharmacol Sci 19: 108–115

    CAS  Google Scholar 

  • Stimmer W, Conti F, Suzuki H, Wang X, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603

    Google Scholar 

  • Sunami A, Dudley S, Fozzard H (1997) Sodium channel selectivity filter regulates antiarrhythmic drug binding. Proc Natl Acad Sci USA 94:14126–14131

    PubMed  CAS  Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    PubMed  CAS  Google Scholar 

  • Terlau H, Heinemann S, Stühmer W, Pusch M, Conti F, Imoto K, Numa S (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett 293:93–96

    PubMed  CAS  Google Scholar 

  • Tricarico D, Fakler B, Spittelmeister W, Ruppersberg J, Stützel R, Franchini C, Tortorella V, Conte-Camerino D, Rudel R (1991) Stereoselective interaction of tocainide and its chiral analogs with sodium channels in human myoballs. Pfügers Arch 418:234–237

    CAS  Google Scholar 

  • Triggle D (1991) Calcium-channel drugs: structure-function relationships and selectivity of action. J Cardiovasc Pharmacol 18:S1–S6

    PubMed  CAS  Google Scholar 

  • Tsien R, Lipscombe D, Madison D, Bley K, Fox A (1995) Reflections on Ca(2+)-channel diversity, 1988–1994. Trends Neurosci 18:52–54

    PubMed  CAS  Google Scholar 

  • Valenzuela C, Bennett P (1994) Gating of cardiac Na+ channels in excised membrane patches after modification by α-chymotrypsin. Biophys J 67:161–171

    PubMed  CAS  Google Scholar 

  • Valenzuela C, Snyders D, Bennett P,T amargo J, Hondeghem L (1995a) Stereoselective block of cardiac sodium channels by bupivacaine in guinea pig ventricular myocytes. Circulation 92:3014–3024

    PubMed  CAS  Google Scholar 

  • Valenzuela C, Delpón E, Tamkun M, Tamargo J, Snyders D (1995b) Stereoselective block of a human cardiac potassium channel (Kvl.5) by bupivacaine enantiomers. Biophys J 69:418–427

    PubMed  CAS  Google Scholar 

  • Valenzuela C, Delpón E, Franqueza L, Gay P, Pérez O, Tamargo J, Snyders D (1996) Class III antiarrhythmic effects of zatebradine. Time-, state-, use-, and voltagedependent block of hKvl.5 channels. Circulation 94:562–570

    PubMed  CAS  Google Scholar 

  • Valenzuela C, Delpón E, Franqueza L, Gay P, Snyders D, Tamargo J (1997) Effects of ropivacaine on a potassium channel (hKvl.5) cloned from human ventricle. Anesthesiology 86:718–728

    PubMed  CAS  Google Scholar 

  • Vassilev P, Scheuer T, Catterall W (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241:1658–1661

    PubMed  CAS  Google Scholar 

  • Vaughan Williams E (1984) A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol 24:129–147

    PubMed  CAS  Google Scholar 

  • Vedantham V, Cannon S (1999) The position of the fast inactivation gate during lidocaine block of voltage-gated Na+ channels. J Gen Physiol 113:7–16

    PubMed  CAS  Google Scholar 

  • Wang G, Dugas M, Ben-Armah I, Honerjager P (1990) Interaction between DPI 201-106 enantiomers at the cardiac sodium channel. Mol Pharmacol 37:17–24

    PubMed  CAS  Google Scholar 

  • Wang G, Wang S (1992) Altered stereoselectivity of cocaine and bupivacaine isomers in normal and batrachotoxin-modified Na+ channels. J Gen Physiol 100:1003–1020

    PubMed  CAS  Google Scholar 

  • Wang G, Wang, S (1994) Modification of cloned brain Na+ channels by batrachotoxin. Pfügers Archiv 427:309–316

    CAS  Google Scholar 

  • Wang G, Wang S (1998) Point mutations in segment I-S6 render voltage-gated Na+ channels resistant to batrachotoxin. Proc Natl Sci Acad USA 95:2653–2658

    CAS  Google Scholar 

  • Wang S, Morales M, Liu S, Strauss H, Rasmusson R (1997) Modulation of HERG affinity for E-4031 by [K+]0 and C-type inactivation. FEBS Lett 417:43–47

    PubMed  CAS  Google Scholar 

  • Wang Z, Fermini B, Nattel S (1993) Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kvl.5 cloned channel currents. Circ Res 73:1061–1076

    PubMed  CAS  Google Scholar 

  • Wright S, Wang S-Y, Wang G (1998) Lysine point mutations in Na+ channel D4-S6 reduce inactivated channel block by local anesthetics. Mol Pharmacol 54:733–739

    PubMed  CAS  Google Scholar 

  • Yang J, Ellinor P, Sather W, Zhang J-F, Tsien R (1993) Molecular determinants of Ca selectivity and ion permeation in L-type Ca channels. Nature 366:158–161

    PubMed  CAS  Google Scholar 

  • Yang N, Horn R (1995) Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15:213–218

    PubMed  CAS  Google Scholar 

  • Yang N, George A, Horn R (1996) Molecular basis of charge movement in voltagegated sodium channels. Neuron 16:113–122

    PubMed  Google Scholar 

  • Yeola S, Rich T, Uebele V,T amkun M, Snyders D (1996) Molecular analysis of a binding site for quinidine in a human cardiac delayed rectifier K+ channel: role of S6 in antiarrhythmic drug binding. Circ Res 78:1105–1114

    PubMed  CAS  Google Scholar 

  • Zhang J, Ellinor P, Aldrich R, Tsien R (1994) Molecular determinants of voltagedependent inactivation in calcium channels. Nature 372:97–100

    PubMed  CAS  Google Scholar 

  • Zhang S, Zhou Z, Gong Q, Makielski C, January C (1999) Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 84:989–998

    PubMed  CAS  Google Scholar 

  • Zhang X, Anderson J, Fedida D (1997) Characterization of nifedipine block of the human heart delayed rectifier, hKvl.5. J Pharmacol Exp Ther 281:1247–1256

    PubMed  CAS  Google Scholar 

  • Zülke R, Reuter H (1998) Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the αiC subunit. Proc Natl Acad Sci USA 95:3287–3294

    Google Scholar 

  • Zülke R, Pitt G, Deisseroth K, Tsien R, Reuter H (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399:159–162

    Google Scholar 

  • Zygmunt A, Maylie J (1990) Stimulation-dependent facilitation of the high threshold calcium current in guinea-pig ventricular myocytes. J Physiol (Lond) 428:653–671

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valenzuela, C. (2003). Stereoselective Drug-Channel Interactions. In: Eichelbaum, M., Testa, B., Somogyi, A. (eds) Stereochemical Aspects of Drug Action and Disposition. Handbook of Experimental Pharmacology, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55842-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55842-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62575-6

  • Online ISBN: 978-3-642-55842-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics