Skip to main content

Recent Developments in Asymmetric Organic Synthesis: Principles and Examples

  • Chapter
Book cover Stereochemical Aspects of Drug Action and Disposition

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 153))

Abstract

Chirality is a fundamental symmetry property in three and other dimensions. A molecule is said to be chiral if it cannot be superimposed upon its mirror image. Putting on one’s shoes or shaking hands confronts us with chirality. Although there is no obvious relationship between macroscopic chirality and chirality at the molecular level, it is accepted that homochirality (i.e., molecules with the same chirality; e.g., L-α-amino acids, D-glucose, D-arabinose) is one of the most fundamental aspects of life on Earth. Parity violation discovered in the weak nuclear force (the fourth type of fundamental force, next to gravity, electromagnetism and the strong nuclear force) led to the experimental observation than the β-particles emitted from radioactive nuclei have an intrinsic asymmetry: left-handed (L)-electrons are preferentially formed relative to right-handed (R)-electrons. The major consequence of this finding is that chirality exists at the level of elemental particles, making the two enantiomers of a chiral molecule not to have exactly the same energy (Ulbricht 1981; Mason 1989; Feringa and van Delden 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam W, Lukacs Z, Harmsen D, Saha-Möller CR, Schreier P (2000) Biocatalytic asymmetric hydroxylation of hydrocarbons with the top soil microorganism Bacillus megaterium.. J Org Chem 65:878–882

    PubMed  CAS  Google Scholar 

  • Ager DJ, East MB (1996) Asymmetric Synthetic methodology. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Akutagawa S (1999) Isomerization of carbon—carbon double bonds. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, Springer, Berlin, pp 813–830

    Google Scholar 

  • Alexakis A, Lensen N, Mangeney P (1991) Chiral aminal templates. Diastereoselectivity of hydrazone alkylation. Asymmetric synthesis of α-aminoaldehydes. Tetrahedron Lett 32:1171–1174

    CAS  Google Scholar 

  • Alexakis A, Lensen N, Tranchier J-P, Mangeney P (1992) Reactivity and Diastereoselectivity of Grignard Reagents toward the hydrazone functionality in toluene solvent. J Org Chem 57:4563–4565

    CAS  Google Scholar 

  • Aratani T, Yoneyoshi Y, Nagase T (1975) Asymmetric synthesis of chrysanthemic acid. An application of copper carbenoid reaction Tetrahedron Lett 1707–1710

    Google Scholar 

  • Azerad R (1995) Application of biocatalysts in organic synthesis. Bull Soc Chim Fr 132:17–51 and references cited

    CAS  Google Scholar 

  • Baiker A, Blaser H-U (1997) Enantioselective catalysts and reactions vol 5. In: Ertl G, Knözinger H, Weilkamp J (eds) Handbook of Heterogeneous Catalysis, Wiley-VCH, New York 4:2422–2436

    Google Scholar 

  • Balázsik K, Szöri K, Felföldi K, Török B, Bartók M (2000) Asymmetric synthesis of alkyl 5-oxotetrahydrofuran-2-carboxylates by enantioselective hydrogenation of dialkyl 2-oxoglutarates over cinchona modified Pt/Al2O3 catalysts. J Chem Soc Chem Commun 555–556

    Google Scholar 

  • Blaser H-U, Buser H-P, Jalett H-P, Pugin B, Spindler F (1999) Iridium ferrocenyl diphosphine catalyzed enantioselective reductive alkylation of a hindered aniline. Synlett SL867–868

    Google Scholar 

  • Bohringer M, Morgenstern K, Schneider WD, Berndt R (1999) Separation of a racemic mixture of two-dimensional molecular clusters by scanning tunneling microscopy. Angew Chem Int Ed Engl 38:821–823

    CAS  Google Scholar 

  • Brown JM (1987) Directed homogeneous hydrogenation. Angew Chem Int Ed Engl 26:190–203

    Google Scholar 

  • Buchwald SL, Hicks FA (1999) Pauson-Khand type reactions. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds), Springer, Berlin, pp 491–510

    Google Scholar 

  • Bull SD, Davies SG, Jones S, Polywka MEC, Prasad RS, Sanganee HJ (1998) A pratical procedure for the multigram synthesis of SuperQuat chiral auxiliaries. Synlett 519–521

    Google Scholar 

  • Cahn RS, Ingold CK, Prelog V (1966) Specification of molecular chirality. Angew Chem Int Ed Engl 5:385

    Google Scholar 

  • Carreira EM (1999) Mukaiyama aldol reaction. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis. Springer, Berlin, pp 997–1065

    Google Scholar 

  • Carreño MC, García Ruano JL, Martín AM, Pedregal C, Rodríguez JH, Rubio A, Sanchez J, Solladié G (1990) Stereoselective reductions of 2-keto sulfoxides with hydrides. J Org Chem 55:2120–2128

    Google Scholar 

  • Cervinka O (1995) Resolution of racemates to enantiomers. In: Enantioselective Reactions in Organic Chemistry, Ellis Horwood Series in Organic Chemistry, London, Chapter 3, pp 5–16

    Google Scholar 

  • Chu Y-Y, Yu C-S, Chen C-J, Yang K-S, Lain J-C, Lin C-H, Chen K (1999) Novel camphor-derived chiral auxiliaries: significant solvent and additive effects on asymmetric reduction of chiral α-keto esters. J Org Chem 64:6993–6998

    CAS  Google Scholar 

  • Corey EJ, Hedal CL (1998) Reduction of carbonyl compounds with chiral oxazoborolidine catalysts: a new paradigm for enantioselective catalysis and a powerful new synthetic method. Angew Chem Int Ed Engl 37:1986–2012

    CAS  Google Scholar 

  • Corey EJ, Zhang F-Y (1999) re. and si-face-selective nitroaldol reactions catalyzed by a rigid chiral quaternary ammonium salt: a highly stereoselective synthesis of the HIV protease inhibitor Amprenavir (Vertex 478). Angew Chem Int Ed 38: 1931–1934

    CAS  Google Scholar 

  • Corey EJ, Bakshi RK, Shibata S (1987) Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications. J Am Chem Soc 109:5551–5553

    CAS  Google Scholar 

  • Corey EJ, Imwinkelried R, Pikul S, Xiang YB (1989) Practical enantioselective Diels-Alder and aldol reactions using a new chiral controller system. J Am Chem Soc 111:5493–5495

    CAS  Google Scholar 

  • Crosby J (1991) Synthesis of optically active compounds: a large scale perspective. Tetrahedron 47:4789–4846

    CAS  Google Scholar 

  • Czuk R, Glanzer BI (1991) Baker’s yeast mediated transformations in organic chemistry. Chem Rev 91:49–97

    Google Scholar 

  • Dang TP, Kagan HB (1971) The asymmetric synthesis of hydratropic acid and aminoacids by homogeneous catalytic hydrogenation. J Chem Soc Chem Commun 481

    Google Scholar 

  • Danishefsky SJ, Kerwin JF, Kobayashi S (1982) Lewis acid catalyzed cyclocondensations of functionalized dienes with aldehydes. J Am Chem Soc 104:358–360

    CAS  Google Scholar 

  • Dauphin G, Fauve A, Veschambre H (1989) Preparation of Stereoisomeric 2,4-diols: synthesis and conformational study of bicyclo derivatives, isomeric components of a pheromone of trypodendrun lineatom.. J Org Chem 54:2238–2242

    CAS  Google Scholar 

  • Davies SG, Sanganee HJ (1995) 4-Substituted-5,5-dimethyl-oxazolidin-2-ones as effective chiral auxiliaries for enolates alkylations and Michael additions. Tetrahedron Asymmetry 6:671–674

    CAS  Google Scholar 

  • De Ninno MP, Perner RJ, Morton HE, Di Domenico Jr. S (1992) The enantioselective synthesis of the potent dopamine D1 agonist (lR,3S)-3-(l’-adamantyl)-l-(aminomethyl)-3,4-dihydro-5,6-dihydroxy-lH-2-benzopyran (A77636). J Org Chem 57:7115–7118

    Google Scholar 

  • Dhokte UP, Soundararajan R, Ramachandran PV, Brown HC (1996) A general, efficient, convenient synthesis of chiral bis(terpenyl)haloborane reagents, valuable for asymmetric synthesis via organoboranes. Tetrahedron Lett 37:8345–8348

    CAS  Google Scholar 

  • Dias LC (2000) Chiral Lewis acid catalyzed ene-reactions. Curr Org Chem 4:305–342

    CAS  Google Scholar 

  • Duret P, Foucault A, Margraff R (2000) Vancomycin as a chiral selector in centrifugal partition chromatography. J Liq Chromatogr Mel Technol 23:295–312

    CAS  Google Scholar 

  • Eames J (2000) Parallel kinetic resolution. Angew Chem Int Ed Engl 39:885–888 and references cited

    PubMed  CAS  Google Scholar 

  • Eliel EL, Wilen SH (1994) Separation of Stereoisomers. Resolution. Racemization. In: Stereochemistry of Organic Compounds. Wiley J&Sons, Chapter 7, pp 297–464

    Google Scholar 

  • Enders D (1984) Alkylation of chiral hydrazones. In: Asymmetric Synthesis, Morisson JD (ed), Academic Press, Orlando FL, USA, Vol 3, pp 275–339

    Google Scholar 

  • Enders D, Wortmann L, Peters R (2000) Recovery of Carbonyl Compounds from N,N-dialkylhydrazones. Acc Chem Res 33:157–169

    PubMed  CAS  Google Scholar 

  • Evans DA, Johnson JS (1999) Diels-Alder reactions. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, Springer, Berlin, pp 1177–1234

    Google Scholar 

  • Evans DA, Johnson JS, Olhava EJ (2000) Enantioselective synthesis of dihydropyrans. Catalysis of hetero-Diels-Alder reactions by bis(osazoline) copper(II) complexes. J Am Chem Soc 122:1635–1649

    CAS  Google Scholar 

  • Evans DA, Olhava EJ, Johnson JS, Janey JM (1998) Chiral C2-symmetric Cu(II) complexes as catalysts for enantioselective hetero-Diels-Alder reactions. Angew Chem Int Ed 37:3372–3375

    CAS  Google Scholar 

  • Evans DA, Takacs JM, McGee LR, Ennis MD, Mathre DJ, Bartoli J (1981) Chiral enolate design. Pure Appl Chem 53:1109–1127

    CAS  Google Scholar 

  • Fadnavis NW, Sharfuddin M, Vadivel SK (1999a) Resolution of racemic 2-amino-lbutanol with immobilized penicillin G acylase. Tetrahedron Asymmetry 10:4495–4500

    CAS  Google Scholar 

  • Fadnavis NW, Vadivel SK, Sharfuddin M (1999b) Chemoenzymatic synthesis of (45,5R)-5-hydroxy-g-decalactone. Tetrahedron Asymmetry 10:3675–3680

    CAS  Google Scholar 

  • Feringa BL, van Delden RA (1999) Absolute asymmetric synthesis: the origin, control and amplification of chirality. Angew Chem Int Ed Engl 38:3418–3438

    PubMed  Google Scholar 

  • Fernandez S, Brieva R, Rebolledo P, Gotor V (1992) Lipase-catalysed enantioselective acylation of TV-protected and unprotected 2-aminoalkan-l-ols. J Chem Soc Perkin Trans I: 2885–2889

    Google Scholar 

  • Forster A, Kovac T, Mosimann H, Renaud P, Vogel, P (1999) Resolution of 7-oxabicyclo[2.2.1] hept-5-en-2-one via cyclic aminals. Tetrahedron Asymmetry 40:567–571

    Google Scholar 

  • Frantz DE, Fässler R, Carreira EM (2000) Facile enantioselective synthesis of proparygylic alcohols by direct addition of terminal alkynes to aldehydes. J Am Chem Soc 122:1806–1807

    CAS  Google Scholar 

  • Fuji I, Lerner RA, Janda KD (1991) Enantiofacial protonation by catalytic antibodies. J Am Chem Soc 113:8528–8529

    Google Scholar 

  • Gawley RE, Aubé J (1996) Principles of asymmetric synthesis. Elsevier Sciences Ldt, Oxford, UK

    Google Scholar 

  • Gellman SH (1998) Foldamers: a manifesto. Acc Chem Res 31:173–180

    CAS  Google Scholar 

  • Gibson CL, Gillon K, Cook S (1998) A study of 4-substituted 5,5-diaryl-oxazolidin-2-ones as efficacious chiral auxiliaries. Tetrahedron Lett 39:6733–6736

    CAS  Google Scholar 

  • Gibson DT, Zylstra GJ (1989) Toluene degradation by Pseudomonas putida. Fl. 264:14940–14946

    Google Scholar 

  • Gibson DT, Hensley M, Yoshioka H, Mabry J (1970) Formation of (+)-cis-2,3-dihydroxy-l-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida.. J Biochem 9:1626–1630

    CAS  Google Scholar 

  • Gibson DT, Koch JR, Schuld CL, Kallio RE (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons. Biochem 7:3795–3802

    CAS  Google Scholar 

  • Guidi A, Theurillat-Mortiz V, Vogel P, Pinkerton A A (1996) Enantiomerically pure Diels-Alder adducts of maleic anhydride to furfural acetáis through thermodynamic control. Single crystal and molecular structure of (1S,4R,4’S,5’S)-l-(4’,5’-dimethyldioxolan-2’-yl)-5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene. Tetrahedron Asymmetry 7:3153–3162

    CAS  Google Scholar 

  • Hager O, Llamas-Saiz AL, Foces-Foces C, Claramont RM, López C, Elguero J (1999) Complexes between l,l’-binaphthyl-2,2’-dicarboxylic acid and pyrazoles: a case of manual sorting of conglomerate crystals (triage). Helv Chim Acta 82:2213–2230

    CAS  Google Scholar 

  • Halpern ME (1997) Phase-transfer catalysis: mechanisms and synthesis ACS Symp Ser 659, (ed) American Chemical Society, Washington, DC

    Google Scholar 

  • Hanessian S (1983) Total Synthesis of Natural Products: the chiron approach. Pergmanon Press, New York

    Google Scholar 

  • Hashimoto S-I, Komeshima N, Koga K (1979) Asymmetric Diels-Alder reaction catalysed by chiral alkoxyaluminium dichloride. J Chem Soc Chem Commun 437–438

    Google Scholar 

  • Hayashi S (1908) Experimentelle Untersuchungen über die sterischen Verhältnisse bei der Dismutation von Phenylglyoxal-hydrat durch verschiedene Bakterien (B. proteus, B. fluorescens, B. pyocyaneum, B. prodigiosum. und B. coli).. Biochem Z 46:7–15

    Google Scholar 

  • Hayashi T (1999) Hydroboration of carbon—carbon bonds. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, Springer, Berlin, pp 351–364

    Google Scholar 

  • Hayashi Y, Nasaraka K (1989) Asymmetric [2+2]-cycloaddition reaction catalyzed by a chiral titanium reagent. Chem Lett 793–796

    Google Scholar 

  • Hemenway MS, Olivo HF (1999) Syntheses of new phosphorous-containing azabicycloalkanes and their microbial hydroxylation using Beauveria bassiana.. J Org Chem 64:6312–6318

    CAS  Google Scholar 

  • Horner L, Siegel H, Büthe H (1968) Aymmetric catalytical hydrogénation with an optically active homogenous and soluble phosphine rhodium complex Angew Chem Int Ed Engl 7:942–943

    CAS  Google Scholar 

  • Hudlicky T (1996) Design constraints in pratical syntheses of complex molecules: current status, case studies with carbohydrates and alkaloids, and future perspectives. Chem Rev 96:3–30

    PubMed  CAS  Google Scholar 

  • Hudlicky T, Entwistl DA, Pitzer KK, Thorpe AH (1996) Modern Methods of monosaccharide synthesis from noncarbohydrate sources. Chem Rev 96:1195–1220

    PubMed  CAS  Google Scholar 

  • Izumi Y, Chibata I, Hoh T (1978) Herstellung und Verwendung von Aminosäuren. Angew Chem 90:187–194

    CAS  Google Scholar 

  • Jacobsen EN, Pfalz A, Yamamoto H (1999) Compehensive asymmetric catalysis I, II, III, Springer, Berlin.

    Google Scholar 

  • Jacques J (1995) Brève préhistoire de la synthèse asymétrique. Bull Soc Chim Fr 132:352–359

    Google Scholar 

  • Jacques J, Collet A, Wilen SH (1994) Resolution by direct crystallization. In: Enantiomers, Racemates, and Resolutions, Krieger Publishing Co., Malabar, Florida, Chapter 4, pp 217–250

    Google Scholar 

  • Jandeleit B, Schaefer DJ, Powers TS, Turner HW, Weinberg WH (1999) Combinatorial Material Science and Catalysis. Angew Chem Int Ed Engl 38:2494–2532

    PubMed  CAS  Google Scholar 

  • Jotterand N, Vogel P (1999) En route toward squalestatins and analogues from furfuryl alcohol and maleic anhydride. Tetrahedron Lett 40:5499–5502

    CAS  Google Scholar 

  • Juaristi J (1997) Enantioselective synthesis of β-amino acids, Wiley-VCH, Weinheim

    Google Scholar 

  • Jurczak J, Golêbiosky A (1989) Optically active N-protected α-aminoaldehydes in organic synthesis. Chem Rev 89:149–164

    CAS  Google Scholar 

  • Kagan HB (1999) Historical Perspective. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive Asymmetric Catalysis. Springer, Berlin pp 10–30

    Google Scholar 

  • Kagan HB, Dang TP (1972) Asymmetric catalytic reduction with transition metal complexes. I. A catalytic system of rhodium(I) with (-)-2,3-Oisopropylidene-2,3-dihydroxy-l, 4-bis(diphenylphosphino)butane, a new chiral diphosphine. J Am Chem Soc 94:6429–6433

    CAS  Google Scholar 

  • Kagan HB, Fiaud JC (1988) Kinetic resolution. Top Stereochem 18:249–330

    CAS  Google Scholar 

  • Keszei S, Simandi B, Szekely E, Fogassy E, Sawinsky J, Kemeny S (1999) Supercritical fluid extraction: a novel method for the resolution of tetramisole. Tetrahedron Asymmetry 10:1275–1281

    CAS  Google Scholar 

  • Kitamura M, Kasahara I, Manabe K, Noyori R, Takaya H (1988) Kinetic resolution of racemic ally lic alcohols by BINAP-ruthenium(II)-catalyzed hydrogenation. J Org Chem 53:708–710

    CAS  Google Scholar 

  • Knowles WS, Sabacky MJ (1968) Catalytic asymmetric hydrogenation employing a soluble, optically active rhodium complex. J Chem Soc Chem Commun 1445–1446

    Google Scholar 

  • Knowles WS, Sabacky MJ, Wineyard BD, Weinkarft DJ (1975) Asymmetric hydrogenation with a complex of rhodium and a chiral bisphosphine. J Am Chem Soc 97:2567-2566

    Google Scholar 

  • Knowles WS, Wineyard BD, Sabacky MJ, Stults BB (1979) Fundamental Research. In: Ishii Y, Tsutsui M (eds) Homogeneous Catalysis. Plenum, New York

    Google Scholar 

  • Kobayashi S, Horibe M (1996) Preparation of both enantiomers of 2-methyl-3-hydroxythioesters based on chiral Lewis acid-controlled synthesis. Tetrahedron 52: 7277–7286

    CAS  Google Scholar 

  • Kobayashi S, Kawasuji T (1993) A new synthetic route to monosaccharides from simple achiral compounds by using a catalytic asymmetric aldol reaction as a key step. Synlett 911–913

    Google Scholar 

  • Koert U (1997) β-Peptides: Novel secondary structures take shape. Angew Chem Int Ed Engl 36:1836–1837

    CAS  Google Scholar 

  • Kriaules WS, Sabacky ML (1968) Catalytical Asymmetric hydrogenation employing a soluble, optically active, rhodium complex. J. Chem Soc Chem Commun 1445-1446

    Google Scholar 

  • Krieg HM, Breytenbach JC, Keizer K (2000) Chiral resolution by β-cyclodextrin polymer-impregnated ceramic membranes. J Membrane Science 164:177–185

    CAS  Google Scholar 

  • List B, Lerner RA, Barbas III CF (1999) Enantioselective aldol cyclodehydrations catalyzed by antibody 38C2. Org Lett 1:59–61

    PubMed  CAS  Google Scholar 

  • Loiseleur O, Hayashi M, Schmees N, Pfaltz A (1997) Enantioselective Heck reactions catalyzed by chiral phsphinooxazoline-palladium complexes. Synthesis 1338–1345

    Google Scholar 

  • Loiseleur O, Meier P, Pfaltz A (1996) Chiral phosphanyldihydooxazoles in asymmetric catalysis: enantioselective Heck reactions. Angew Chem Int Ed 35:200–202

    CAS  Google Scholar 

  • Magora A, Abu-Lafi S, Levin S (2000) Comparison of the enantioseparation of racemic uridine analogs on Welk-01 and ChiralPak-AD columns. J Chromatogr 866: 183–194

    CAS  Google Scholar 

  • Männig D, Nöth H (1985) Catalytic hydroboration with rhodium complexes. Angew Chem Int Ed Engl 24:878–879

    Google Scholar 

  • Mason S (1989) The origin of biomolecular chirality in nature. In: Krstuloviá AM (ed) Chiral separations by HPLC, applications to pharmaceutical compounds, Ellis Horwood Ltd, Chichester, pp 13–30

    Google Scholar 

  • Medvedovici A, Sandra P, Toribio L, David F (1997) Chiral packed column subcritical fluid chromatography on polysaccharide and macrocyclic antibiotic chiral stationary phases. J Chromatogr 785:159–171

    CAS  Google Scholar 

  • Mikami K, Terada M (1999) Ene-type reactions. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds), Springer, Berlin, pp 1143–1174

    Google Scholar 

  • Miller L, Orihuela C, Fronek R, Honda D, Dapremont O (1999) Chromatographic resolution of the enantiomers of a pharmaceutical intermediate from the milligram to the kilogram scale. J Chromatogr 849:309–317

    CAS  Google Scholar 

  • Miller L, Orihuela C, Fronek R, Murphy J (1999) Preparative chromatographic resolution of enantiomers using polar organic solvents with polysaccharide chiral stationary phases. Angew Chem Int Ed Engl 865:211–226

    CAS  Google Scholar 

  • Mukaiyama T, Shiina I, Kobayashi S (1990) A convenient and versatile route for the stereoselective synthesis of monosaccharides via key chiral synthons prepared from achiral source. Chem Lett 2201–2204

    Google Scholar 

  • Nakamura S, Watanabe Y, Toru T (2000) Extremely efficient chiral induction in conjugate additions of tolyl α-lithio-β-(trimethylsilyl)ethyl sulfoxide and subsequent electrophilic trapping reactions. J Org Chem 65:1758–1766

    PubMed  CAS  Google Scholar 

  • Nelson SG (1998) Catalyzed enantioselective aldol additions of latent enolate equivalents. Tetrahedron Asymmetry 9:357–389

    CAS  Google Scholar 

  • Nelson SG, Spencer KL (2000) Enantioselective β-amino acid synthesis base on catalyzed asymmetric acyl halide-aldehyde cyclocondensation reactions. Angew Chem Int Ed Engl 39:1323–1325

    PubMed  CAS  Google Scholar 

  • Nelson SG, Peelen TJ, Wan Z (1999) Catalytic asymmetric acyl halide-aldehyde cyclocondensations. A strategy for enantioselective catalyzed cross aldol reactions. J Am Chem Soc 121:9742–9743

    CAS  Google Scholar 

  • Nikaido T, Kawada N (1994) Kokai Tokkyo Koho JP 6,209,781

    Google Scholar 

  • Nozaki H, Moroiti S,T akaya H, Noyori R (1966) Asymmetric inductions in carbenoid reaction by means of a dissymmetric copper chelate. Tetrahedron Lett 2:5239–5244

    Google Scholar 

  • Ogasawara M, Ikeda H, Hayashi T (2000) π-Allylpalladium-mediated catalytic synthesis of functionalized alienes. Angew Chem Int Ed 39:1042–1044

    CAS  Google Scholar 

  • Ohkuma T, Noyori R (1999) Hydrogenation of carbonyl groups. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, Springer, Berlin, pp 199–246

    Google Scholar 

  • Ooi T, Maruoka K (1999) Hetero-Diels-Alder and related reactions. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, Springer, Berlin, pp 1237–1254

    Google Scholar 

  • Osborn JA, Jardine FH, Young JF, Wilkinson G (1966) The preparation and properties of tris(phenylphosphine)halogenorhodium (I) and some reactions thereof including catalytical homogneous hydrogenation of olefins and acetylenes and their derivatives. J Chem Soc (A) 1711–1732

    Google Scholar 

  • Palmer MJ, Wills M (1999) Asymmetric transfer hydrogenation of C = O and C = N bonds. Tetrahedron Asymmetry 10:2045–2061

    CAS  Google Scholar 

  • Pelter A, Smith K, Brown HC (1988). Borane reagents. Academic Press, New York

    Google Scholar 

  • Pirkle WH, Pochapsky TC (1989) Considerations of chiral recognition relevant to the liquid chromatographic separation of enantiomers. 89:347–362

    CAS  Google Scholar 

  • Prelog V, Helmchen G (1982) Basic Principles of the CIP-System and Proposals for a Revision. Angew Chem Int Ed Engl 21:567–583

    Google Scholar 

  • Profir VM, Matsuoka M (2000) Processes and phenomena of purity decrease during the optical resolution of DL-threonine by preferential crystallization. Colloids & Surfaces A-Physicochemical&Engineering Aspects 164:315–324

    CAS  Google Scholar 

  • Rahman A, Shah Z (1993) Stereoselective synthesis in organic chemistry. Springer-Verlag, New York

    Google Scholar 

  • Ramos Tombo GM, Schär H-P, Fernandez i Busqueis X, Ghisalba O (1986) Synthesis of both enantiomeric forms of 2-substituted-l,3-propanediol monoacetates starting from a common prochiral precursor, using enzymatic transformations in aqueous and in organic media. Tetrahedron Lett 27:5707–5710

    Google Scholar 

  • Reetz MT, Jaeger KE (2000) Enantioselective enzymes for organic synthesis created by directed evolution. Chem Eur J 6:407–412

    PubMed  CAS  Google Scholar 

  • Ronan B, Kagan HB (1992) Highly enantioselective synthesis of a Corey prostaglandin intermediate. Tetrahedron Asymmetry 3:115–122

    CAS  Google Scholar 

  • Rosenthaler L (1908) Biochem Z 14:232, 365

    Google Scholar 

  • Schmid R, Scalone M (1999) Process R&D of Pharmaceutical, Vitamins, and fine chemicals. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, Springer, Berlin, pp 1439–1449

    Google Scholar 

  • Schurig V (1984) Gas chromatographic separation of enantiomers on optically active metal-complex-free stationary phases. Angew Chem Int Ed Engl 23:747–830

    Google Scholar 

  • Seebach D, Prelog V (1982) The unambigous specification of the steric course of asymmetric syntheses. Angew Chem Int Ed Engl 21:654–660

    Google Scholar 

  • Sellner H, Seebach D (1999) Dentritically cross-linking chiral ligands: high stability of a polystyrene-bound Ti-TADDOLate catalyst with diffusion control. Angew Chem Int Ed Engl 38:1918–1920

    CAS  Google Scholar 

  • Sevin A-F, Vogel P (1994) A new stereoselective and convergent approach to the syntheis of long-chain polypropionate fragments. J Org Chem 59:5920–5926

    CAS  Google Scholar 

  • Seyden-Penne J (1994) Chiral auxiliaries and ligands in asymmetric synthesis. John Wiley&Sons, Inc, New York

    Google Scholar 

  • Sheldon RA (1993) Chirotechnology, Dekker M, New York

    Google Scholar 

  • Shibazaki M, Gröger H (1999) Nitroaldol reaction. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds), Springer, Berlin, pp 1075–1090

    Google Scholar 

  • Shimizu KD, Snapper ML, Hoveyda AH (1999) Combinatorial approaches. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive Asymmetric Catalysis, Springer, Berlin, pp 1389–1399

    Google Scholar 

  • Sih CJ, Wu SS (1989) Resolution of Enantiomers via biocatalysis. Top Stereochem 19:63–125

    CAS  Google Scholar 

  • Simonsen KB, Svenstrup N, Roberson M, Jørgensen KA (2000) Development of an unusually highly enantioselective hetero-Diels-Alder reaction of benzaldehyde with activated dienes catalyzed by hyper-coordinating chiral aluminium complexes. Chem Eur J 6:123–128

    PubMed  CAS  Google Scholar 

  • Soai K, Osanai S, Kadowaki K, Yonekudo S, Shibata T, Sato I (1999a) d-. and l-Quartzpromoted highly enantioselective synthesis of a chiral organic compound. J Am Chem Soc 121:11235–11236

    CAS  Google Scholar 

  • Soai K, Shibata T (1999b) Alkylation of carbonyl groups. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, Springer, Berlin, pp 911–922

    Google Scholar 

  • Solladié G (1981) Asymmetric synthesis using nucleophilic reagents containing a chiral sulfoxide group. Synthesis 185–196

    Google Scholar 

  • Solladié G, Almario A (1992) Asymmetric synthesis of both enantiomers of methyl and t-butyl 3-hydroxybutyrates monitored by optically active sulfoxides. Tetrahedron Lett 33:2477–2480

    Google Scholar 

  • Solladié G, Demailly G, Greck C (1985) Reduction of β-hydroxysulfoxides: application to the synthesis of optically active epoxides. Tetrahedron Lett 26:435–438

    Google Scholar 

  • Solladié G, Greck C, Demailly G, Solladié-Cavallo A (1982) Reduction of β-ketosulfoxides: a highly efficient asymmetric synthesis of both enantiomers of methyl carbinols from the corresponding esters. Tetrahedron Lett 23:5047–5050

    Google Scholar 

  • Stinson SC (1995) Chiral drugs: Market growth in single-isomer forms spurs research advances. Chem Ing News (Oct 5) 44–77

    Google Scholar 

  • Stinson SC (1999) Chiral drug interactions. Chem Ing News (Oct 11) 101–120

    Google Scholar 

  • Sugai T (1999) Application of enzyme-and microorganism-catalyzed reactions to organic synthesis. Curr Org Chem 3:373–406

    CAS  Google Scholar 

  • Theurillat-Mortiz V, Vogel P (1996) Synthesis of enantiomerically pure 7-oxabicyclo [2.2.1]hept-2-enes precursors in the preparation of taxol analogues. Tetrahedron Asymmetry 7:3163–3168

    Google Scholar 

  • Theurillat-Mortiz V, Guidi A, Vogel P (1997) Remote control of Diels-Alder additions. Enantioselective synthesis of (2R)-l,2,3,4-tetrahydro-2-hydroxy-5,8-dimethoxynapththalen-2-yl methyl ketone (Wong’s anthracycline intermediate) from furfural. Tetrahedron Asymmetry 8:3497–3501

    Google Scholar 

  • Tomioka K, Nagaoka Y (1999) Conjugate addition of organometallic reagents. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds), Springer, Berlin, pp 1105–1120

    Google Scholar 

  • Trost BM, Strege PE (1977) Asymmetric inductions in catalytic allylic alkylation. J Am Chem Soc 99:1649–1651

    CAS  Google Scholar 

  • Ulbricht TLV (1981) Reflexion on the origin of optical asymmetry on Earth. Origins Life Evol Biosphere 11:55–70

    CAS  Google Scholar 

  • Vedejs E, Chen E (1997) Parallel kinetic resolution. J Am Chem Soc 119:2584–2585

    CAS  Google Scholar 

  • Vince R, Brownell J (1990) Resolution of racemic carbovir and selective inhibition of human immunodeficiency virus by the (-)-enantiomer. Bioch Bioph Res Comm 168:912–916

    CAS  Google Scholar 

  • Vogel P (2000) Synthesis of rare carbohydrates and analogues starting from enantiomerically pure 7-oxabicyclo[2.2.1]heptyl derivatives (”naked sugars”). Contempory Organic Chemistry 4:455–480

    CAS  Google Scholar 

  • Vogel P, Cossy J, Plumet J, Arjona O (1999) Derivatives of 7-oxabicyclo[2.2.1]heptane in nature and as useful synthetic intermediates. Tetrahedron 55:13521–13642

    CAS  Google Scholar 

  • Vogel P, Fattori D, Gasparini F, Le Drian L (1990) Optically pure 7-oxabicyclo [2.2.1]hept-5-en-2-yl derivatives (”naked sugars”) as new Chirons. Synlett 173-184

    Google Scholar 

  • Vogl EM, Gröger H, Shibasaki M (1999) Towards Perfect asymmetric catalysis: additives and cocatalysts. Angew Chem Int Ed Engl 38:1570–1577

    CAS  Google Scholar 

  • Von Matt P, Pfaltz A (1993) Chiral Phosphinoaryldihydrooxazoles as ligands in asymmetric catalysis: Pd-catalyzed allylic substitution. Angew Chem Int Ed 32: 566–568

    Google Scholar 

  • Walker AJ (1992) Asymmetric Carbon-carbon bond formation using sulfoxidestabilized carbanions. Tetrahedron Asymmetry 3:961–998

    CAS  Google Scholar 

  • Warm A, Vogel P (1987) Synthesis of (+)-and (-)-methyl 8-epinonactate and (+)-and (-)-methyl nonactate. Helv Chem Acta 70:690–700

    CAS  Google Scholar 

  • Weatherhead GS, Ford JG, Alexanian EJ, Schrock RR, Hoveyda AH (2000) Tandem catalytic asymmetric ring-opening metathesis/ring-closing metathesis. J Am Chem Soc 122:1828–1829

    CAS  Google Scholar 

  • Wentworth Jr P, Janda KD (1999) Catalytic Antibodies. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive Asymmetric Catalysis. Springer, Berlin, pp 1403–1

    Google Scholar 

  • Wilen SH (1971) Resolving agents and resolution in organic chemistry. In: Allinger NL, Eliel EL (eds) Topics in Stereochemistry 6:107–176

    Google Scholar 

  • Wilkinson TG, Shepherd RG, Thomas JP, Baughn C (1961) Stereospecificity in a new type of synthetic antituberculous agent. J Am Chem Soc 83:2212–2213

    CAS  Google Scholar 

  • Williams KL, Sander LC (1997) Enantiomer separation on chiral stationary phases in supercritical fluid chromatography. J Chromatogr 785:149–158

    CAS  Google Scholar 

  • Xie Z-F, Suemune H, Sakai K (1993) Synthesis of chiral building blocks using Pseudomonas fluorescens. lipase-catalyzed asymmetric hydrolysis of meso diacetates. Tetrahedron Asymmetry 4:973–980

    CAS  Google Scholar 

  • Yamaguchi M (1999) Conjugate additions of stabilized carbanions. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds), Springer, Berlin, pp 1121–1139

    Google Scholar 

  • Yates P, Eaton P (1960) Accelerations of the Diels-Alder reaction by aluminium chloride. J Am Chem Soc 82:4436–4437

    CAS  Google Scholar 

  • Zhong G, Hoffmann T, Lerner RA, Danishefsky S, Barbas III CF (1997) Antibodycatalyzed enantioselective Robinson annulation. J Am Chem Soc 119:8131–8132

    CAS  Google Scholar 

  • Zief M, Crane, LJ (1988) Editors Of: Chromatographic Chiral Separation, Chromatographic Sciences Series, Vol 40, Marcel Dekker, New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogel, P. (2003). Recent Developments in Asymmetric Organic Synthesis: Principles and Examples. In: Eichelbaum, M., Testa, B., Somogyi, A. (eds) Stereochemical Aspects of Drug Action and Disposition. Handbook of Experimental Pharmacology, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55842-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55842-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62575-6

  • Online ISBN: 978-3-642-55842-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics