Advertisement

Literatur

  • Günter Wozniak
Chapter
  • 485 Downloads
Part of the VDI-Buch book series (VDI-BUCH)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bär P (1935) Über die physikalischen Grundlagen der Zerstäubungstrocknung. Dissertation TU KarlsruheGoogle Scholar
  2. Bergelt H (2000) Persönliche Kommunikation. TU Bergakademie, FreibergGoogle Scholar
  3. Brauer H (1971) Grundlagen der Einphasen-und Mehrphasenströmungen. Verlag Sauerländer, Aarau und Frankfurt am MainGoogle Scholar
  4. Chin J S, Lefebvre A H (1985) Some Comments on the Characterization of Drop-Size Distribution in Sprays. In: ICLASS–85: 3rd International Conference on Liquid Atomisation and Spray Systems. London, pp IVA 1.1–IVA 1.12Google Scholar
  5. Crowe C, Sommerfeld M, Tsuji Y (1988) Multiphase Flows with Droplets and Particles. CRC PressGoogle Scholar
  6. Dombrowski N, Hasson D, Ward D E (1960) Some aspects of liquid flow through fan spray nozzles. Chem Eng Sci 12:35–50CrossRefGoogle Scholar
  7. Dombrowski N, Lioyd T L (1974) Atomization of liquids by spinning cups. Chem Engng J 8, 1:63–81CrossRefGoogle Scholar
  8. Dombrowski N, Tahir M A (1977) Atomization of Oils by Swirl Spray Pressure Nozzles. J Inst Fuel 6:59–67Google Scholar
  9. Dombrowski N, Wolfsohn D L (1972) The atomization of Water by Swirl Spray Pressure Nozzles. Trans Instn Chem Engrs 50:259–269Google Scholar
  10. Doumas M, Laster R (1953) Liquid-film Properties for Centrifugal Spray Nozzles. Chem Eng Prog 49:518–526Google Scholar
  11. Dunskii V F, Nikitin N V (1972) Monodisperse atomization of a liquid by a rotating disk. J Engng Phys 23, 5:1474–1475Google Scholar
  12. Durst F, Melling A, Whitelaw J H (1976) Principles and Practice of Laser-DopplerAnemometry. Academic Press, LondonGoogle Scholar
  13. Durst F, Zaré M (1975) Laser Doppler measurements in two-phase flows. In: The accuracy of flow measurements by laser Doppler methods. Proceedings of the LDA Symposium, Copenhagen. Skovlunde, pp 403–429Google Scholar
  14. Eisenmenger W (1959) Dynamic properties of the surface tension of water and aqueous solutions of surface active agents with standing capillary waves in the frequency range from 10 kc/s to 1,5 Mc/s. Acoustica 9:327–340Google Scholar
  15. Fraunhofer J (1817) Bestimmung des Brechungs-und Farbzerstreuungsvermögens verschiedener Glasarten. Gilberts Annalen der Physik 56:193Google Scholar
  16. Fraser R P, Dombrowski N, Routley J H (1963) The filming of liquids by spinning cups. Chem Engng Sci 18,6:323–337CrossRefGoogle Scholar
  17. Fraser R P, Eisenklam P, Dombrowski M, Hasson D (1962) Drop Formation from Rapidly Moving Sheets. AIChE Journal 8,5:672–680CrossRefGoogle Scholar
  18. Glathe A, Wozniak G, Richter T (2001) The influence of eccentricity on the performance of a coaxial prefilming air assist atomizer. Atomization and Sprays 11:21–33Google Scholar
  19. Glück B (1988) Hydrodynamische und gasdynamische Rohrströmung–Druckverluste. Bausteine der Heizungstechnik. VEB Verlag für Bauwesen, BerlinGoogle Scholar
  20. Gersten G, Herwig H (1992) Strömungsmechanik. Vieweg, BraunschweigGoogle Scholar
  21. Giffen E, Lamb T A J (1953) The Effekt of Airdensity on Spray Atomization. Motor Research Association Report 1953/5Google Scholar
  22. Grant R P, Middlemann S (1966) Newtonian Jet Stability. AIChE Journal 12,4:669–678CrossRefGoogle Scholar
  23. Harkins W D (1952) The Physical Chemistry of Surface Films. Reinhold Publishing Corporation, New York [u. a.]Google Scholar
  24. Harkins W D, Brown FE (1919) The Determination of Surface Tension (Free Surface Energy), and the Weigth of Falling Drops: the Surface Tension of Water and Benzene by the Capillary Height Method. J Am Chem Soc 41:499–524CrossRefGoogle Scholar
  25. Harkins W D, Jordan H F (1930) A Method for the Determination of Surface and Interfacial Tension from the Maximum Pull on a Ring. J. Amer. Chem. Soc. 52:1751–1772CrossRefGoogle Scholar
  26. Hartley DE, Murgatroyd W (1964) Criteria for a breakup of thin liquid layers flowing isothermally over solid surfaces. Int J Heat Mass Transfer 7, 9:1003–1015CrossRefzbMATHGoogle Scholar
  27. Heuer M, Leschonski K (1985) Results Obtained with a New Instrument for the Measurement of Particle Size Distributions from Diffraction Patterns. Part Charact 2:7–13CrossRefGoogle Scholar
  28. Hinze J O (1955) Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Prozess. AIChE Journal 1,3:289–295CrossRefGoogle Scholar
  29. Hinze J O, Milborn H (1950) Atomization of liquids by means of a rotating cup. J Appl Mech 17,6:145–153Google Scholar
  30. International Standard ISO 13320 (1999) Particle size analysis-Laser diffraction methods Part 1: General principles. International Organization for Standardization, Schweiz (Bezugsquelle: Beuth Verlag GmbH, Berlin)Google Scholar
  31. Kerker M (1969) The Scattering of Light. Academic Press, New York LondonGoogle Scholar
  32. Lefebvre A H (1989) Atomization and Sprays. Hemisphere Publishing Corperation, New York [u.a.]Google Scholar
  33. Leroux S, Dumonchel C, Ledoux M (1996) The stability curve of newtonian liquid jets. Atomization and Sprays 6:479–500Google Scholar
  34. van Lier J J C, van Paassen C A A (1980) Überblick über die Forschungsarbeit l„Einspritzkühlung“r an der TU Delft. VGB Kraftwerkstechnik 60:958–969Google Scholar
  35. Lin S P, Reitz R D (1998) Drop and Spray Formation from Liquid Jets. Ann Rev Fluid Mech 30:85–105MathSciNetCrossRefGoogle Scholar
  36. Lorenzetto G E, Lefebvre A H (1977) Measurements of Drop Size on a Plain-Jet Airblast Atimizer. AIAA Journal 15, 7:1006–1010CrossRefGoogle Scholar
  37. Macosko C W (1994) Rheology: principles, measurements, and applications. VCH publishers Inc., New York [u.a.]Google Scholar
  38. Maurer A (1998) Non-Impact-Technologie birgt große Potentiale. Deutscher Druck 13-14, 1012Google Scholar
  39. Matsumoto S, Saito K M, Takashima Y (1974) Phenomena transition of a liquid atomization from disk. J Chem Engng Japan 7, I:13–19CrossRefGoogle Scholar
  40. Mehrhardt E, Brauer H (1979) Zerstäuben von Flüssigkeiten mit rotierenden Scheiben; Flüssigkeitsauflösung, Tropfengröjse und Tropfengrößenverteilung. Fortschrittsberichte der VOIZeitschriften: Reihe 3; 52. VDI, DüsseldorfGoogle Scholar
  41. Mie G (1908) Beiträge zur Optik trüber Medien. Annalen der Physik 25:377–445CrossRefzbMATHGoogle Scholar
  42. Miesse C C (1955) Correlation of Experimental Data on the Disintegration of Liquid Jets. Ind Eng Chem 47, 9:1690–1701CrossRefGoogle Scholar
  43. Nigmatulin R I (1987) Dynamik von Mehrphasenmedien (in Russisch). Nauka, MoskauGoogle Scholar
  44. Nikolaev V S, Vachagin K D, Barysew Y N (1967) Film flow of viscous liquids over surfaces of rapidly rotating conical disks. Internat Chem Engng 7, 4:595–598Google Scholar
  45. Nukiyama S, Tanasawa Y (1939) Experiments on the Atomization of Liquid in an Airstream. Trans Soc Mech Eng Jpn 5:68–229Google Scholar
  46. Owczarek J A (1971) Fundamentals of gas Dynamics. McGraw-Hill, New YorkGoogle Scholar
  47. Padday J F, Pétré G, Rusu C G, Gamero J, Wozniak G (1997) The shape, stability and breakage of pendant liquid bridges. J Fluid Mech 352:177–204MathSciNetCrossRefGoogle Scholar
  48. Panasenkov N J (1951) Über den Einfluss der Turbulenz auf die Zerstäubung eines flüssigen Strahls (in Russisch). Zurnal techniceskoj fiziki 21:160–166Google Scholar
  49. Pilch M, Erdmann C A (1987) Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments für Acceleration-Induced Breakup of a Liquid Drop. Int Journal Multiphase Flow 13:741–757CrossRefGoogle Scholar
  50. Plateau J (1945) Statique Bxpérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires, cited bei Lord Rayleigh,Theory of Sound, II, DoverPublications, New YorkGoogle Scholar
  51. Profos P, Pfeifer T (1992) Handbuch der industriellen Meßtechnik 5. Auflage R. Oldenbourg, München WienGoogle Scholar
  52. Rayleigh Lord (1878) On the Instabilityof Jets. Proc. London Math. Soc., 10, 4–13CrossRefGoogle Scholar
  53. Rayleigh Lord (1882) On the Equilibriumof Liquid Conducting Masses charged with Electricity. Philos Mag Ser 5,14:184–186CrossRefGoogle Scholar
  54. Reimann U, Pohlmann R (1976) Optimierung der Vernebelung von Flüssigkeiten mit Ultraschall unter Berücksichtigung der Probleme bei höheren Frequenzen. Forsch Ingenieurwes 42,1:1–36CrossRefGoogle Scholar
  55. Reitz R D, Bracco F V (1982) Mechanismus of Atomization of a liquid jet. Phys Fluids 25, 2:1730–1741CrossRefzbMATHGoogle Scholar
  56. Richter T (1997) Die Wahl des geeigneten Zerstäubers. Verfahrenstechnik–Marktiibersicht und umfassenderEinkaufsführer (Sonderausgabe zu Verfahrenstechnik):96–100Google Scholar
  57. Richter T, Glaser H W (1987) Auslegung von Hohlkegel-Druckdüsen. Chem-Ing-Tech 59, 4:332–334CrossRefGoogle Scholar
  58. Rosin R, Rammler E (1933) The Laws Governing the Fitness of Powered Coal. J Inst Fuel 7, 31:29–36Google Scholar
  59. Ruck B (1987) Laser-Doppler-Anemometrie. AT-Fachverlag GmbH, StuttgartGoogle Scholar
  60. Saffmann M (1989) Phasen-Doppler-Methode zur optischen Partikelgrößenmessung. Technisches Messen 56:3–8Google Scholar
  61. Schorradt G (1984) Zerstäubungskennwerte von Hohlkegeldüsen für verschiedene Stoff-und Betriebswerte. Fortschritt-Berichte der VDI-Zeitschriften: Reihe 7; 88. VOl, DüsseldorfGoogle Scholar
  62. Senecal P K, Schmidt D P, Nouar I, Rutland C J, Reitz R D, Corradini M L (1999) Modeling high-speed viscous liquid sheet atomization. Int Journal Multiphase Flow 25:1073–1097CrossRefzbMATHGoogle Scholar
  63. Shraiber A A et al. (1996) Breakup of drops by aerodynamik forces. Atomization and Sprays 6:667–692Google Scholar
  64. Sigloch H (1980) Technische Fluidmechanik: Strömungslehre, Herman Schroedel, Hannover [u.a.]zbMATHGoogle Scholar
  65. Song S H, Lee S Y (1996) Study of atomization mechanism of gas/liquid mixtures flowing throughY-jet atomizers. Atomization and Sprays 6:193–209Google Scholar
  66. Stamm K (1964) Untersuchung zum Mechanismus der Ultraschallvemebelung an Flüssigkeitsoberflächenim Hinblickauf technische Anwendungen. Dissertation RWTH AachenGoogle Scholar
  67. Sterling A M, Sleicher C A (1975) The instabilityof capillary jets. J Fluid Mech 68:477–495CrossRefzbMATHGoogle Scholar
  68. Subramanian R S, Balasubramaniam R, Wozniak G (2002) Fluid mechanics of bubbles and drops. In: Monti R (ed) Physics of Fluids in Microgravity. Taylor & Francis, London [u. a.], pp 149–177Google Scholar
  69. Tanasawa Y, Toyoda S (1955) On the Atomizing Characteristics of Injectors for Diesel Engines. Technol. Rep. Tohoku Univ. 21:117–145Google Scholar
  70. Tanasawa Y, Miysaka Y, Umehara M (1959) On the filamentation of liquid by means of rotating discs. Trans Soc MechEng Japan 25:879–905CrossRefGoogle Scholar
  71. Tanasawa Y, Miysaka Y, Umehara M (1978) Effect of shape of rotating disks and cups on liquid atomization. In: ICLAS’78, Proceedingsof the 1st internationalconference on liquid atomization and spray systems, 27-31 August 1978, Tokyo. Publisher:The Organizing Committee, The Conference, Tokyo, pp165–172Google Scholar
  72. Taylor G I (1948) The Mechanics of Swirl Atomizers. In: Proc. 7th. Int. Congr. Appl. Mech. 2, London, pp 280–285Google Scholar
  73. Theissing P (1975) Erzeugung von Flüssigkeitsfilmen, Flüssigkeitslamellen und Tropfen durch rotierende Scheiben. Dissertation BerlinGoogle Scholar
  74. Van de Hulst H C (1981) Light Scattering by Small Particles. Dover Publication Inc., New YorkGoogle Scholar
  75. VDI-Würmeatlas: Berechnungsblätter für den Wärmeubergang. Siebte erweiterte Auflage. VDI, DüsseldorfGoogle Scholar
  76. Wahrhaft Z (1997) An Introduction to Thermal-Fluid Engineering. Cambridge University Press, CambridgeGoogle Scholar
  77. Walzel P (1984) Designof Single Substance Pressure Atomizers. Ger Chem Eng 7:1–12Google Scholar
  78. Walzel P (1990) Zerstäubenvon Flüssigkeiten. Chem-Ing-Tech 62:983–994CrossRefGoogle Scholar
  79. Walzel P (2001) Abschätzung von Tropfengrößen an Lamellendüsen-ein Vergleich verschiedener Ansätze. In: Spray 01 (Reprint),Hamburg-Harburg, S V.1–I–V.I–7Google Scholar
  80. Walzel P, Klaumünzer U (1981) Flow Regimes on Horizontal Porous Plates. Ger Chem Eng 4:154–160Google Scholar
  81. Weber C Z (1931) Zum Zerfall eines Flüssigkeiststrahls. Math Mech 11:136–154zbMATHGoogle Scholar
  82. Wozniak G, Pé tré G, Siekmann J, Zumbach F (1993) Konstruktion und Erprobungeiner neuartigen Apparaturzur Messung von Grenzflächenspannungen zwischen Fluiden. Forschungim Ingenieurwesen 95:37–41CrossRefGoogle Scholar
  83. Wozniak G, Siekmann J, Srulijes J (1988) Thermocapillary bubble and drop dynamics under reduced gravity-survey and prospects. Z Flugwiss Weltraumforsch 12:137–144Google Scholar
  84. Yeh Y, Cummings H Z (1964) Localized flow measurements with an He-NeLaserspectrometer. Appl Phys Lett 4:176–178CrossRefGoogle Scholar
  85. Zogg M (1993) Einführung in die mechanische Verfahrenstechnik. Teubner, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Günter Wozniak
    • 1
  1. 1.Institut für MechanikTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations